Update README.md
Browse files
README.md
CHANGED
@@ -2,5 +2,37 @@
|
|
2 |
license: bigscience-openrail-m
|
3 |
widget:
|
4 |
- text: CC(Sc1nn(-c2ccc(Cl)cc2)c([MASK])s1)C(=O)NCC1CCCO1
|
|
|
|
|
5 |
pipeline_tag: fill-mask
|
6 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: bigscience-openrail-m
|
3 |
widget:
|
4 |
- text: CC(Sc1nn(-c2ccc(Cl)cc2)c([MASK])s1)C(=O)NCC1CCCO1
|
5 |
+
datasets:
|
6 |
+
- ChEMBL
|
7 |
pipeline_tag: fill-mask
|
8 |
+
---
|
9 |
+
|
10 |
+
# BERT base for SMILES
|
11 |
+
This is bidirectional transformer pretrained on SMILES (simplified molecular-input line-entry system) strings.
|
12 |
+
|
13 |
+
Example: Amoxicillin
|
14 |
+
```
|
15 |
+
O=C([C@@H](c1ccc(cc1)O)N)N[C@@H]1C(=O)N2[C@@H]1SC([C@@H]2C(=O)O)(C)C
|
16 |
+
```
|
17 |
+
|
18 |
+
Two training objectives were used:
|
19 |
+
1. masked language modeling
|
20 |
+
2. molecular-formula validity prediction
|
21 |
+
|
22 |
+
## Intended uses
|
23 |
+
This model is primarily aimed at being fine-tuned on the following tasks:
|
24 |
+
- molecule classification
|
25 |
+
- molecule-to-gene-expression mapping
|
26 |
+
- cell targeting
|
27 |
+
|
28 |
+
## How to use in your code
|
29 |
+
```python
|
30 |
+
from transformers import BertTokenizerFast, BertModel
|
31 |
+
checkpoint = 'unikei/bert-base-smiles'
|
32 |
+
tokenizer = BertTokenizerFast.from_pretrained(checkpoint)
|
33 |
+
model = BertModel.from_pretrained(checkpoint)
|
34 |
+
|
35 |
+
example = 'O=C([C@@H](c1ccc(cc1)O)N)N[C@@H]1C(=O)N2[C@@H]1SC([C@@H]2C(=O)O)(C)C'
|
36 |
+
tokens = tokenizer(example, return_tensors='pt')
|
37 |
+
predictions = model(**tokens)
|
38 |
+
```
|