nielsbantilan
commited on
Commit
•
1aa01d1
1
Parent(s):
c0dc2b5
Upload folder using huggingface_hub
Browse files- .gitattributes +8 -0
- flyte6a_2j95z/local_flytekit/2c23843e4a45ae5249c43c2c168a9827/00000 +3 -0
- flyte9y8545zr/local_flytekit/4da14b1253b8076f6a95a51b0669110b/00000 +3 -0
- flyte_training_config.json +1 -1
- flyteeopmp26r/local_flytekit/8ed8cade608dc55fe9aaec6dd8d60c20/00000 +3 -0
- flyteg7cwhdqx/local_flytekit/45e4b36c3a0889b39fe253c6b3c94b2f/00000 +3 -0
- flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000 +3 -0
- flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 +3 -0
- flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 +3 -0
- flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 +3 -0
- pytorch_model-00001-of-00003.bin +1 -1
- pytorch_model-00002-of-00003.bin +1 -1
- pytorch_model-00003-of-00003.bin +1 -1
- tmp2uwb6tgl/_remote_module_non_scriptable.py +81 -0
- tmp5210xtp5/_remote_module_non_scriptable.py +81 -0
- tmp9bh3sdsi/_remote_module_non_scriptable.py +81 -0
- tmphrsaxah2/_remote_module_non_scriptable.py +81 -0
- tmpi_fed6hf/_remote_module_non_scriptable.py +81 -0
- tmpn7s2kko7/_remote_module_non_scriptable.py +81 -0
- tmptwgnkwb4/__pycache__/_remote_module_non_scriptable.cpython-310.pyc +0 -0
- tmptwgnkwb4/_remote_module_non_scriptable.py +81 -0
- trainer_state.json +598 -16
- training_args.bin +1 -1
.gitattributes
CHANGED
@@ -41,3 +41,11 @@ flytek6j4vh44/local_flytekit/b3abf2788c219ecf383e0ae59ed8b535/00000 filter=lfs d
|
|
41 |
flyteknfii7qb/local_flytekit/52ebc6e9298c73dfffdc9f2fffeabb0e/00000 filter=lfs diff=lfs merge=lfs -text
|
42 |
flytem4no92qv/local_flytekit/02d908a57a7bd02757ee87b4326523e8/00000 filter=lfs diff=lfs merge=lfs -text
|
43 |
flytep9efi7h3/local_flytekit/ae679064ecc696d6e9c73a37fdb3edd8/00000 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
flyteknfii7qb/local_flytekit/52ebc6e9298c73dfffdc9f2fffeabb0e/00000 filter=lfs diff=lfs merge=lfs -text
|
42 |
flytem4no92qv/local_flytekit/02d908a57a7bd02757ee87b4326523e8/00000 filter=lfs diff=lfs merge=lfs -text
|
43 |
flytep9efi7h3/local_flytekit/ae679064ecc696d6e9c73a37fdb3edd8/00000 filter=lfs diff=lfs merge=lfs -text
|
44 |
+
flyte6a_2j95z/local_flytekit/2c23843e4a45ae5249c43c2c168a9827/00000 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
flyte9y8545zr/local_flytekit/4da14b1253b8076f6a95a51b0669110b/00000 filter=lfs diff=lfs merge=lfs -text
|
46 |
+
flyteeopmp26r/local_flytekit/8ed8cade608dc55fe9aaec6dd8d60c20/00000 filter=lfs diff=lfs merge=lfs -text
|
47 |
+
flyteg7cwhdqx/local_flytekit/45e4b36c3a0889b39fe253c6b3c94b2f/00000 filter=lfs diff=lfs merge=lfs -text
|
48 |
+
flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000 filter=lfs diff=lfs merge=lfs -text
|
49 |
+
flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 filter=lfs diff=lfs merge=lfs -text
|
50 |
+
flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 filter=lfs diff=lfs merge=lfs -text
|
51 |
+
flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 filter=lfs diff=lfs merge=lfs -text
|
flyte6a_2j95z/local_flytekit/2c23843e4a45ae5249c43c2c168a9827/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyte9y8545zr/local_flytekit/4da14b1253b8076f6a95a51b0669110b/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyte_training_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"base_model": "meta-llama/Llama-2-7b-hf", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps":
|
|
|
1 |
+
{"base_model": "meta-llama/Llama-2-7b-hf", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 100, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 4, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
|
flyteeopmp26r/local_flytekit/8ed8cade608dc55fe9aaec6dd8d60c20/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyteg7cwhdqx/local_flytekit/45e4b36c3a0889b39fe253c6b3c94b2f/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
pytorch_model-00001-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9877982386
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0edb9f1a102ad6501ee570b17824779e345dad58fa4c0fee69b413296923668b
|
3 |
size 9877982386
|
pytorch_model-00002-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9894793766
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0210300fa233e838ff00964ab3e48ed9d867c21001e52949992e0ec55ed3cff
|
3 |
size 9894793766
|
pytorch_model-00003-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7180985861
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9608bedcb9fd77131a6d81629f8caddaa607b616ac9440b5f1b515bb1a705db
|
3 |
size 7180985861
|
tmp2uwb6tgl/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmp5210xtp5/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmp9bh3sdsi/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmphrsaxah2/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpi_fed6hf/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpn7s2kko7/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmptwgnkwb4/__pycache__/_remote_module_non_scriptable.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
tmptwgnkwb4/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
trainer_state.json
CHANGED
@@ -1,46 +1,628 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
{
|
12 |
"epoch": 4.44,
|
13 |
"learning_rate": 0,
|
14 |
-
"loss": 1.
|
15 |
"step": 10
|
16 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
{
|
18 |
"epoch": 8.89,
|
19 |
"learning_rate": 2e-05,
|
20 |
-
"loss": 1.
|
21 |
"step": 20
|
22 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
{
|
24 |
"epoch": 13.33,
|
25 |
"learning_rate": 2e-05,
|
26 |
-
"loss": 0.
|
27 |
"step": 30
|
28 |
},
|
29 |
{
|
30 |
-
"epoch": 13.
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
|
35 |
-
|
36 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
],
|
39 |
-
"logging_steps":
|
40 |
-
"max_steps":
|
41 |
-
"num_train_epochs":
|
42 |
"save_steps": 200,
|
43 |
-
"total_flos":
|
44 |
"trial_name": null,
|
45 |
"trial_params": null
|
46 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 44.44444444444444,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 100,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.44,
|
13 |
+
"learning_rate": 0,
|
14 |
+
"loss": 1.7341,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.89,
|
19 |
+
"learning_rate": 0,
|
20 |
+
"loss": 1.7223,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 1.33,
|
25 |
+
"learning_rate": 0,
|
26 |
+
"loss": 1.7608,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 1.78,
|
31 |
+
"learning_rate": 0,
|
32 |
+
"loss": 1.7115,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 2.22,
|
37 |
+
"learning_rate": 0,
|
38 |
+
"loss": 1.7181,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 2.67,
|
43 |
+
"learning_rate": 0,
|
44 |
+
"loss": 1.7022,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 3.11,
|
49 |
+
"learning_rate": 0,
|
50 |
+
"loss": 1.7242,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 3.56,
|
55 |
+
"learning_rate": 0,
|
56 |
+
"loss": 1.7352,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 4.0,
|
61 |
+
"learning_rate": 0,
|
62 |
+
"loss": 1.7181,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
{
|
66 |
"epoch": 4.44,
|
67 |
"learning_rate": 0,
|
68 |
+
"loss": 1.7213,
|
69 |
"step": 10
|
70 |
},
|
71 |
+
{
|
72 |
+
"epoch": 4.89,
|
73 |
+
"learning_rate": 0,
|
74 |
+
"loss": 1.6694,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 5.33,
|
79 |
+
"learning_rate": 0,
|
80 |
+
"loss": 1.7046,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 5.78,
|
85 |
+
"learning_rate": 0,
|
86 |
+
"loss": 1.7109,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 6.22,
|
91 |
+
"learning_rate": 0,
|
92 |
+
"loss": 1.6948,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 6.67,
|
97 |
+
"learning_rate": 0,
|
98 |
+
"loss": 1.6816,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 7.11,
|
103 |
+
"learning_rate": 0.0,
|
104 |
+
"loss": 1.6851,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 7.56,
|
109 |
+
"learning_rate": 1.2618595071429148e-05,
|
110 |
+
"loss": 1.6041,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 8.0,
|
115 |
+
"learning_rate": 2e-05,
|
116 |
+
"loss": 1.5208,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 8.44,
|
121 |
+
"learning_rate": 2e-05,
|
122 |
+
"loss": 1.4946,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
{
|
126 |
"epoch": 8.89,
|
127 |
"learning_rate": 2e-05,
|
128 |
+
"loss": 1.492,
|
129 |
"step": 20
|
130 |
},
|
131 |
+
{
|
132 |
+
"epoch": 9.33,
|
133 |
+
"learning_rate": 2e-05,
|
134 |
+
"loss": 1.4501,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 9.78,
|
139 |
+
"learning_rate": 2e-05,
|
140 |
+
"loss": 1.1894,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 10.22,
|
145 |
+
"learning_rate": 2e-05,
|
146 |
+
"loss": 1.1437,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 10.67,
|
151 |
+
"learning_rate": 2e-05,
|
152 |
+
"loss": 1.02,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 11.11,
|
157 |
+
"learning_rate": 2e-05,
|
158 |
+
"loss": 0.926,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 11.56,
|
163 |
+
"learning_rate": 2e-05,
|
164 |
+
"loss": 0.7794,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 12.0,
|
169 |
+
"learning_rate": 2e-05,
|
170 |
+
"loss": 0.7719,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 12.44,
|
175 |
+
"learning_rate": 2e-05,
|
176 |
+
"loss": 0.6107,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 12.89,
|
181 |
+
"learning_rate": 2e-05,
|
182 |
+
"loss": 0.633,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
{
|
186 |
"epoch": 13.33,
|
187 |
"learning_rate": 2e-05,
|
188 |
+
"loss": 0.4781,
|
189 |
"step": 30
|
190 |
},
|
191 |
{
|
192 |
+
"epoch": 13.78,
|
193 |
+
"learning_rate": 2e-05,
|
194 |
+
"loss": 0.4379,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 14.22,
|
199 |
+
"learning_rate": 2e-05,
|
200 |
+
"loss": 0.3391,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 14.67,
|
205 |
+
"learning_rate": 2e-05,
|
206 |
+
"loss": 0.2928,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 15.11,
|
211 |
+
"learning_rate": 2e-05,
|
212 |
+
"loss": 0.2631,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 15.56,
|
217 |
+
"learning_rate": 2e-05,
|
218 |
+
"loss": 0.2399,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 16.0,
|
223 |
+
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.2075,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 16.44,
|
229 |
+
"learning_rate": 2e-05,
|
230 |
+
"loss": 0.186,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 16.89,
|
235 |
+
"learning_rate": 2e-05,
|
236 |
+
"loss": 0.1782,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 17.33,
|
241 |
+
"learning_rate": 2e-05,
|
242 |
+
"loss": 0.144,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 17.78,
|
247 |
+
"learning_rate": 2e-05,
|
248 |
+
"loss": 0.1317,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 18.22,
|
253 |
+
"learning_rate": 2e-05,
|
254 |
+
"loss": 0.1144,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 18.67,
|
259 |
+
"learning_rate": 2e-05,
|
260 |
+
"loss": 0.1193,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 19.11,
|
265 |
+
"learning_rate": 2e-05,
|
266 |
+
"loss": 0.1161,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 19.56,
|
271 |
+
"learning_rate": 2e-05,
|
272 |
+
"loss": 0.0993,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 20.0,
|
277 |
+
"learning_rate": 2e-05,
|
278 |
+
"loss": 0.1083,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 20.44,
|
283 |
+
"learning_rate": 2e-05,
|
284 |
+
"loss": 0.101,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 20.89,
|
289 |
+
"learning_rate": 2e-05,
|
290 |
+
"loss": 0.1013,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 21.33,
|
295 |
+
"learning_rate": 2e-05,
|
296 |
+
"loss": 0.1066,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 21.78,
|
301 |
+
"learning_rate": 2e-05,
|
302 |
+
"loss": 0.1005,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 22.22,
|
307 |
+
"learning_rate": 2e-05,
|
308 |
+
"loss": 0.0882,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 22.67,
|
313 |
+
"learning_rate": 2e-05,
|
314 |
+
"loss": 0.1067,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 23.11,
|
319 |
+
"learning_rate": 2e-05,
|
320 |
+
"loss": 0.0797,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 23.56,
|
325 |
+
"learning_rate": 2e-05,
|
326 |
+
"loss": 0.0943,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 24.0,
|
331 |
+
"learning_rate": 2e-05,
|
332 |
+
"loss": 0.0769,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 24.44,
|
337 |
+
"learning_rate": 2e-05,
|
338 |
+
"loss": 0.0855,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 24.89,
|
343 |
+
"learning_rate": 2e-05,
|
344 |
+
"loss": 0.0735,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 25.33,
|
349 |
+
"learning_rate": 2e-05,
|
350 |
+
"loss": 0.0833,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 25.78,
|
355 |
+
"learning_rate": 2e-05,
|
356 |
+
"loss": 0.0811,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 26.22,
|
361 |
+
"learning_rate": 2e-05,
|
362 |
+
"loss": 0.0772,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 26.67,
|
367 |
+
"learning_rate": 2e-05,
|
368 |
+
"loss": 0.0721,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 27.11,
|
373 |
+
"learning_rate": 2e-05,
|
374 |
+
"loss": 0.0825,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 27.56,
|
379 |
+
"learning_rate": 2e-05,
|
380 |
+
"loss": 0.0758,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 28.0,
|
385 |
+
"learning_rate": 2e-05,
|
386 |
+
"loss": 0.0725,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 28.44,
|
391 |
+
"learning_rate": 2e-05,
|
392 |
+
"loss": 0.077,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 28.89,
|
397 |
+
"learning_rate": 2e-05,
|
398 |
+
"loss": 0.0654,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 29.33,
|
403 |
+
"learning_rate": 2e-05,
|
404 |
+
"loss": 0.0675,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 29.78,
|
409 |
+
"learning_rate": 2e-05,
|
410 |
+
"loss": 0.0772,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 30.22,
|
415 |
+
"learning_rate": 2e-05,
|
416 |
+
"loss": 0.0718,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 30.67,
|
421 |
+
"learning_rate": 2e-05,
|
422 |
+
"loss": 0.0625,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 31.11,
|
427 |
+
"learning_rate": 2e-05,
|
428 |
+
"loss": 0.0616,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 31.56,
|
433 |
+
"learning_rate": 2e-05,
|
434 |
+
"loss": 0.071,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 32.0,
|
439 |
+
"learning_rate": 2e-05,
|
440 |
+
"loss": 0.0655,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 32.44,
|
445 |
+
"learning_rate": 2e-05,
|
446 |
+
"loss": 0.0591,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 32.89,
|
451 |
+
"learning_rate": 2e-05,
|
452 |
+
"loss": 0.0669,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 33.33,
|
457 |
+
"learning_rate": 2e-05,
|
458 |
+
"loss": 0.0653,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 33.78,
|
463 |
+
"learning_rate": 2e-05,
|
464 |
+
"loss": 0.0662,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 34.22,
|
469 |
+
"learning_rate": 2e-05,
|
470 |
+
"loss": 0.0688,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 34.67,
|
475 |
+
"learning_rate": 2e-05,
|
476 |
+
"loss": 0.0498,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 35.11,
|
481 |
+
"learning_rate": 2e-05,
|
482 |
+
"loss": 0.0576,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 35.56,
|
487 |
+
"learning_rate": 2e-05,
|
488 |
+
"loss": 0.0737,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 36.0,
|
493 |
+
"learning_rate": 2e-05,
|
494 |
+
"loss": 0.0609,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 36.44,
|
499 |
+
"learning_rate": 2e-05,
|
500 |
+
"loss": 0.0594,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 36.89,
|
505 |
+
"learning_rate": 2e-05,
|
506 |
+
"loss": 0.0725,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 37.33,
|
511 |
+
"learning_rate": 2e-05,
|
512 |
+
"loss": 0.0598,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 37.78,
|
517 |
+
"learning_rate": 2e-05,
|
518 |
+
"loss": 0.0652,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 38.22,
|
523 |
+
"learning_rate": 2e-05,
|
524 |
+
"loss": 0.0588,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 38.67,
|
529 |
+
"learning_rate": 2e-05,
|
530 |
+
"loss": 0.0671,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 39.11,
|
535 |
+
"learning_rate": 2e-05,
|
536 |
+
"loss": 0.0596,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 39.56,
|
541 |
+
"learning_rate": 2e-05,
|
542 |
+
"loss": 0.0518,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 40.0,
|
547 |
+
"learning_rate": 2e-05,
|
548 |
+
"loss": 0.0612,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 40.44,
|
553 |
+
"learning_rate": 2e-05,
|
554 |
+
"loss": 0.0593,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 40.89,
|
559 |
+
"learning_rate": 2e-05,
|
560 |
+
"loss": 0.0521,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 41.33,
|
565 |
+
"learning_rate": 2e-05,
|
566 |
+
"loss": 0.0536,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 41.78,
|
571 |
+
"learning_rate": 2e-05,
|
572 |
+
"loss": 0.0548,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 42.22,
|
577 |
+
"learning_rate": 2e-05,
|
578 |
+
"loss": 0.0507,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 42.67,
|
583 |
+
"learning_rate": 2e-05,
|
584 |
+
"loss": 0.0588,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 43.11,
|
589 |
+
"learning_rate": 2e-05,
|
590 |
+
"loss": 0.0506,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 43.56,
|
595 |
+
"learning_rate": 2e-05,
|
596 |
+
"loss": 0.055,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 44.0,
|
601 |
+
"learning_rate": 2e-05,
|
602 |
+
"loss": 0.0503,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 44.44,
|
607 |
+
"learning_rate": 2e-05,
|
608 |
+
"loss": 0.054,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 44.44,
|
613 |
+
"step": 100,
|
614 |
+
"total_flos": 7478779576320.0,
|
615 |
+
"train_loss": 0.49326207719743254,
|
616 |
+
"train_runtime": 9902.4306,
|
617 |
+
"train_samples_per_second": 0.969,
|
618 |
+
"train_steps_per_second": 0.01
|
619 |
}
|
620 |
],
|
621 |
+
"logging_steps": 1,
|
622 |
+
"max_steps": 100,
|
623 |
+
"num_train_epochs": 50,
|
624 |
"save_steps": 200,
|
625 |
+
"total_flos": 7478779576320.0,
|
626 |
"trial_name": null,
|
627 |
"trial_params": null
|
628 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6523
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:135858efd4811a09b43593532cb735b8e0bee8450cc74446fdba3f0ec24a504a
|
3 |
size 6523
|