File size: 11,134 Bytes
36295dd f4e7524 020ca26 f4e7524 36295dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
license: apache-2.0
---
<div align="center">
**⚠️ Disclaimer:**
The huggingface models currently give different results to the detoxify library (see issue [here](https://github.com/unitaryai/detoxify/issues/15)). For the most up to date models we recommend using the models from https://github.com/unitaryai/detoxify
# 🙊 Detoxify
## Toxic Comment Classification with ⚡ Pytorch Lightning and 🤗 Transformers
![CI testing](https://github.com/unitaryai/detoxify/workflows/CI%20testing/badge.svg)
![Lint](https://github.com/unitaryai/detoxify/workflows/Lint/badge.svg)
</div>
![Examples image](examples.png)
## Description
Trained models & code to predict toxic comments on 3 Jigsaw challenges: Toxic comment classification, Unintended Bias in Toxic comments, Multilingual toxic comment classification.
Built by [Laura Hanu](https://laurahanu.github.io/) at [Unitary](https://www.unitary.ai/), where we are working to stop harmful content online by interpreting visual content in context.
Dependencies:
- For inference:
- 🤗 Transformers
- ⚡ Pytorch lightning
- For training will also need:
- Kaggle API (to download data)
| Challenge | Year | Goal | Original Data Source | Detoxify Model Name | Top Kaggle Leaderboard Score | Detoxify Score
|-|-|-|-|-|-|-|
| [Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) | 2018 | build a multi-headed model that’s capable of detecting different types of of toxicity like threats, obscenity, insults, and identity-based hate. | Wikipedia Comments | `original` | 0.98856 | 0.98636
| [Jigsaw Unintended Bias in Toxicity Classification](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification) | 2019 | build a model that recognizes toxicity and minimizes this type of unintended bias with respect to mentions of identities. You'll be using a dataset labeled for identity mentions and optimizing a metric designed to measure unintended bias. | Civil Comments | `unbiased` | 0.94734 | 0.93639
| [Jigsaw Multilingual Toxic Comment Classification](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification) | 2020 | build effective multilingual models | Wikipedia Comments + Civil Comments | `multilingual` | 0.9536 | 0.91655*
*Score not directly comparable since it is obtained on the validation set provided and not on the test set. To update when the test labels are made available.
It is also noteworthy to mention that the top leadearboard scores have been achieved using model ensembles. The purpose of this library was to build something user-friendly and straightforward to use.
## Limitations and ethical considerations
If words that are associated with swearing, insults or profanity are present in a comment, it is likely that it will be classified as toxic, regardless of the tone or the intent of the author e.g. humorous/self-deprecating. This could present some biases towards already vulnerable minority groups.
The intended use of this library is for research purposes, fine-tuning on carefully constructed datasets that reflect real world demographics and/or to aid content moderators in flagging out harmful content quicker.
Some useful resources about the risk of different biases in toxicity or hate speech detection are:
- [The Risk of Racial Bias in Hate Speech Detection](https://homes.cs.washington.edu/~msap/pdfs/sap2019risk.pdf)
- [Automated Hate Speech Detection and the Problem of Offensive Language](https://arxiv.org/pdf/1703.04009.pdf%201.pdf)
- [Racial Bias in Hate Speech and Abusive Language Detection Datasets](https://arxiv.org/pdf/1905.12516.pdf)
## Quick prediction
The `multilingual` model has been trained on 7 different languages so it should only be tested on: `english`, `french`, `spanish`, `italian`, `portuguese`, `turkish` or `russian`.
```bash
# install detoxify
pip install detoxify
```
```python
from detoxify import Detoxify
# each model takes in either a string or a list of strings
results = Detoxify('original').predict('example text')
results = Detoxify('unbiased').predict(['example text 1','example text 2'])
results = Detoxify('multilingual').predict(['example text','exemple de texte','texto de ejemplo','testo di esempio','texto de exemplo','örnek metin','пример текста'])
# optional to display results nicely (will need to pip install pandas)
import pandas as pd
print(pd.DataFrame(results, index=input_text).round(5))
```
For more details check the Prediction section.
## Labels
All challenges have a toxicity label. The toxicity labels represent the aggregate ratings of up to 10 annotators according the following schema:
- **Very Toxic** (a very hateful, aggressive, or disrespectful comment that is very likely to make you leave a discussion or give up on sharing your perspective)
- **Toxic** (a rude, disrespectful, or unreasonable comment that is somewhat likely to make you leave a discussion or give up on sharing your perspective)
- **Hard to Say**
- **Not Toxic**
More information about the labelling schema can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data).
### Toxic Comment Classification Challenge
This challenge includes the following labels:
- `toxic`
- `severe_toxic`
- `obscene`
- `threat`
- `insult`
- `identity_hate`
### Jigsaw Unintended Bias in Toxicity Classification
This challenge has 2 types of labels: the main toxicity labels and some additional identity labels that represent the identities mentioned in the comments.
Only identities with more than 500 examples in the test set (combined public and private) are included during training as additional labels and in the evaluation calculation.
- `toxicity`
- `severe_toxicity`
- `obscene`
- `threat`
- `insult`
- `identity_attack`
- `sexual_explicit`
Identity labels used:
- `male`
- `female`
- `homosexual_gay_or_lesbian`
- `christian`
- `jewish`
- `muslim`
- `black`
- `white`
- `psychiatric_or_mental_illness`
A complete list of all the identity labels available can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data).
### Jigsaw Multilingual Toxic Comment Classification
Since this challenge combines the data from the previous 2 challenges, it includes all labels from above, however the final evaluation is only on:
- `toxicity`
## How to run
First, install dependencies
```bash
# clone project
git clone https://github.com/unitaryai/detoxify
# create virtual env
python3 -m venv toxic-env
source toxic-env/bin/activate
# install project
pip install -e detoxify
cd detoxify
# for training
pip install -r requirements.txt
```
## Prediction
Trained models summary:
|Model name| Transformer type| Data from
|:--:|:--:|:--:|
|`original`| `bert-base-uncased` | Toxic Comment Classification Challenge
|`unbiased`| `roberta-base`| Unintended Bias in Toxicity Classification
|`multilingual`| `xlm-roberta-base`| Multilingual Toxic Comment Classification
For a quick prediction can run the example script on a comment directly or from a txt containing a list of comments.
```bash
# load model via torch.hub
python run_prediction.py --input 'example' --model_name original
# load model from from checkpoint path
python run_prediction.py --input 'example' --from_ckpt_path model_path
# save results to a .csv file
python run_prediction.py --input test_set.txt --model_name original --save_to results.csv
# to see usage
python run_prediction.py --help
```
Checkpoints can be downloaded from the latest release or via the Pytorch hub API with the following names:
- `toxic_bert`
- `unbiased_toxic_roberta`
- `multilingual_toxic_xlm_r`
```bash
model = torch.hub.load('unitaryai/detoxify','toxic_bert')
```
Importing detoxify in python:
```python
from detoxify import Detoxify
results = Detoxify('original').predict('some text')
results = Detoxify('unbiased').predict(['example text 1','example text 2'])
results = Detoxify('multilingual').predict(['example text','exemple de texte','texto de ejemplo','testo di esempio','texto de exemplo','örnek metin','пример текста'])
# to display results nicely
import pandas as pd
print(pd.DataFrame(results,index=input_text).round(5))
```
## Training
If you do not already have a Kaggle account:
- you need to create one to be able to download the data
- go to My Account and click on Create New API Token - this will download a kaggle.json file
- make sure this file is located in ~/.kaggle
```bash
# create data directory
mkdir jigsaw_data
cd jigsaw_data
# download data
kaggle competitions download -c jigsaw-toxic-comment-classification-challenge
kaggle competitions download -c jigsaw-unintended-bias-in-toxicity-classification
kaggle competitions download -c jigsaw-multilingual-toxic-comment-classification
```
## Start Training
### Toxic Comment Classification Challenge
```bash
python create_val_set.py
python train.py --config configs/Toxic_comment_classification_BERT.json
```
### Unintended Bias in Toxicicity Challenge
```bash
python train.py --config configs/Unintended_bias_toxic_comment_classification_RoBERTa.json
```
### Multilingual Toxic Comment Classification
This is trained in 2 stages. First, train on all available data, and second, train only on the translated versions of the first challenge.
The [translated data](https://www.kaggle.com/miklgr500/jigsaw-train-multilingual-coments-google-api) can be downloaded from Kaggle in french, spanish, italian, portuguese, turkish, and russian (the languages available in the test set).
```bash
# stage 1
python train.py --config configs/Multilingual_toxic_comment_classification_XLMR.json
# stage 2
python train.py --config configs/Multilingual_toxic_comment_classification_XLMR_stage2.json
```
### Monitor progress with tensorboard
```bash
tensorboard --logdir=./saved
```
## Model Evaluation
### Toxic Comment Classification Challenge
This challenge is evaluated on the mean AUC score of all the labels.
```bash
python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv
```
### Unintended Bias in Toxicicity Challenge
This challenge is evaluated on a novel bias metric that combines different AUC scores to balance overall performance. More information on this metric [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview/evaluation).
```bash
python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv
# to get the final bias metric
python model_eval/compute_bias_metric.py
```
### Multilingual Toxic Comment Classification
This challenge is evaluated on the AUC score of the main toxic label.
```bash
python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv
```
### Citation
```
@misc{Detoxify,
title={Detoxify},
author={Hanu, Laura and {Unitary team}},
howpublished={Github. https://github.com/unitaryai/detoxify},
year={2020}
}
``` |