File size: 7,638 Bytes
6ecaf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
using UnityEngine;
using Unity.Sentis;
using UnityEngine.Video;
using UnityEngine.UI;
using System.Collections.Generic;
using Lays = Unity.Sentis.Layers;
/*
* Face Landmarks Inference
* ========================
*
* Basic inference script for mediapose face landmarks
*
* Put this script on the Main Camera
* Put face_landmarks.sentis in the Assets/StreamingAssets folder
* Create a RawImage of in the scene
* Put a link to that image in previewUI
* Put a video in Assets/StreamingAssets folder and put the name of it int videoName
* Or put a test image in inputImage
* Set inputType to appropriate input
*/
public class RunFaceLandmark : MonoBehaviour
{
//Drag a link to a raw image here:
public RawImage previewUI = null;
public string videoName = "chatting.mp4";
// Image to put into neural network
public Texture2D inputImage;
public InputType inputType = InputType.Video;
//Resolution of displayed image
Vector2Int resolution = new Vector2Int(640, 640);
WebCamTexture webcam;
VideoPlayer video;
const BackendType backend = BackendType.GPUCompute;
RenderTexture targetTexture;
public enum InputType { Image, Video, Webcam };
const int markerWidth = 5;
//Holds array of colors to draw landmarks
Color32[] markerPixels;
IWorker worker;
//Size of input image to neural network (196)
const int size = 192;
Ops ops;
ITensorAllocator allocator;
Model model;
//webcam device name:
const string deviceName = "";
bool closing = false;
Texture2D canvasTexture;
void Start()
{
allocator = new TensorCachingAllocator();
//(Note: if using a webcam on mobile get permissions here first)
SetupTextures();
SetupMarkers();
SetupInput();
SetupModel();
SetupEngine();
}
void SetupModel()
{
model = ModelLoader.Load(Application.streamingAssetsPath + "/face_landmark.sentis");
}
public void SetupEngine()
{
worker = WorkerFactory.CreateWorker(backend, model);
ops = WorkerFactory.CreateOps(backend, allocator);
}
void SetupTextures()
{
//To display the get and display the original image:
targetTexture = new RenderTexture(resolution.x, resolution.y, 0);
//Used for drawing the markers:
canvasTexture = new Texture2D(targetTexture.width, targetTexture.height);
previewUI.texture = targetTexture;
}
void SetupMarkers()
{
markerPixels = new Color32[markerWidth * markerWidth];
for (int n = 0; n < markerWidth * markerWidth; n++)
{
markerPixels[n] = Color.white;
}
int center = markerWidth / 2;
markerPixels[center * markerWidth + center] = Color.black;
}
void SetupInput()
{
switch (inputType)
{
case InputType.Webcam:
{
webcam = new WebCamTexture(deviceName, resolution.x, resolution.y);
webcam.requestedFPS = 30;
webcam.Play();
break;
}
case InputType.Video:
{
video = gameObject.AddComponent<VideoPlayer>();//new VideoPlayer();
video.renderMode = VideoRenderMode.APIOnly;
video.source = VideoSource.Url;
video.url = Application.streamingAssetsPath + "/"+videoName;
video.isLooping = true;
video.Play();
break;
}
default:
{
Graphics.Blit(inputImage, targetTexture);
}
break;
}
}
void Update()
{
GetImageFromSource();
if (Input.GetKeyDown(KeyCode.Escape))
{
closing = true;
Application.Quit();
}
if (Input.GetKeyDown(KeyCode.P))
{
previewUI.enabled = !previewUI.enabled;
}
}
void GetImageFromSource()
{
if (inputType == InputType.Webcam)
{
// Format video input
if (!webcam.didUpdateThisFrame) return;
var aspect1 = (float)webcam.width / webcam.height;
var aspect2 = (float)resolution.x / resolution.y;
var gap = aspect2 / aspect1;
var vflip = webcam.videoVerticallyMirrored;
var scale = new Vector2(gap, vflip ? -1 : 1);
var offset = new Vector2((1 - gap) / 2, vflip ? 1 : 0);
Graphics.Blit(webcam, targetTexture, scale, offset);
}
if (inputType == InputType.Video)
{
var aspect1 = (float)video.width / video.height;
var aspect2 = (float)resolution.x / resolution.y;
var gap = aspect2 / aspect1;
var vflip = false;
var scale = new Vector2(gap, vflip ? -1 : 1);
var offset = new Vector2((1 - gap) / 2, vflip ? 1 : 0);
Graphics.Blit(video.texture, targetTexture, scale, offset);
}
if (inputType == InputType.Image)
{
Graphics.Blit(inputImage, targetTexture);
}
}
void LateUpdate()
{
if (!closing)
{
RunInference(targetTexture);
}
}
void RunInference(Texture source)
{
var transform = new TextureTransform();
transform.SetDimensions(size, size, 3);
transform.SetTensorLayout(0, 3, 1, 2);
using var image0 = TextureConverter.ToTensor(source, transform);
// Pre-process the image to make input in range (-1..1)
using var image = ops.Mad(image0, 2f, -1f);
worker.Execute(image0);
using var landmarks= worker.PeekOutput("conv2d_21") as TensorFloat;
//This gives the condifidence:
//using var confidence = worker.PeekOutput("conv2d_31") as TensorFloat;
float scaleX = targetTexture.width * 1f / size;
float scaleY = targetTexture.height * 1f / size;
landmarks.MakeReadable();
DrawLandmarks(landmarks, scaleX, scaleY);
}
void DrawLandmarks(TensorFloat landmarks, float scaleX, float scaleY)
{
int numLandmarks = landmarks.shape[3] / 3; //468 face landmarks
RenderTexture.active = targetTexture;
canvasTexture.ReadPixels(new Rect(0, 0, targetTexture.width, targetTexture.height), 0, 0);
for (int n = 0; n < numLandmarks; n++)
{
int px = (int)(landmarks[0, 0, 0, n * 3 + 0] * scaleX) - (markerWidth - 1) / 2;
int py = (int)(landmarks[0, 0, 0, n * 3 + 1] * scaleY) - (markerWidth - 1) / 2;
int pz = (int)(landmarks[0, 0, 0, n * 3 + 2] * scaleX);
int destX = Mathf.Clamp(px, 0, targetTexture.width - 1 - markerWidth);
int destY = Mathf.Clamp(targetTexture.height - 1 - py, 0, targetTexture.height - 1 - markerWidth);
canvasTexture.SetPixels32(destX, destY, markerWidth, markerWidth, markerPixels);
}
canvasTexture.Apply();
Graphics.Blit(canvasTexture, targetTexture);
RenderTexture.active = null;
}
void CleanUp()
{
closing = true;
ops?.Dispose();
allocator?.Dispose();
if (webcam) Destroy(webcam);
if (video) Destroy(video);
RenderTexture.active = null;
targetTexture.Release();
worker?.Dispose();
worker = null;
}
void OnDestroy()
{
CleanUp();
}
}
|