--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - uner_all metrics: - precision - recall - f1 - accuracy model-index: - name: uner_all results: - task: name: Token Classification type: token-classification dataset: name: uner_all type: uner_all config: default split: None metrics: - name: Precision type: precision value: 0.8566170026292725 - name: Recall type: recall value: 0.8522846180676665 - name: F1 type: f1 value: 0.8544453186467348 - name: Accuracy type: accuracy value: 0.9842612991521463 --- # uner_all This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the uner_all dataset. The uner_all dataset combines all training datasets in UNER. It achieves the following results on the evaluation set: - Loss: 0.1180 - Precision: 0.8566 - Recall: 0.8523 - F1: 0.8544 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.10.1+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3