File size: 6,442 Bytes
a794986
0001752
 
 
 
 
 
 
 
 
a794986
 
0001752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: other
base_model: nvidia/mit-b3
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b2-seed-67-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b2-seed-67-v1

This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the unreal-hug/REAL_DATASET_SEG_331 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4746
- Mean Iou: 0.2841
- Mean Accuracy: 0.3507
- Overall Accuracy: 0.6084
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.7915
- Accuracy Rv: 0.4646
- Accuracy Ra: 0.4834
- Accuracy La: 0.6858
- Accuracy Vs: 0.0
- Accuracy As: 0.0
- Accuracy Mk: 0.0
- Accuracy Tk: nan
- Accuracy Asd: 0.3160
- Accuracy Vsd: 0.2747
- Accuracy Ak: 0.4910
- Iou Unlabeled: 0.0
- Iou Lv: 0.7252
- Iou Rv: 0.4232
- Iou Ra: 0.4411
- Iou La: 0.5427
- Iou Vs: 0.0
- Iou As: 0.0
- Iou Mk: 0.0
- Iou Tk: nan
- Iou Asd: 0.2832
- Iou Vsd: 0.2342
- Iou Ak: 0.4759

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:|
| 1.2449        | 5.88  | 100  | 1.1508          | 0.1187   | 0.1954        | 0.4575           | nan                | 0.8193      | 0.0533      | 0.1371      | 0.5424      | 0.0         | 0.0         | 0.0         | nan         | 0.0171       | 0.0155       | 0.3697      | 0.0           | 0.5501 | 0.0518 | 0.1253 | 0.3509 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0170  | 0.0148  | 0.3145 |
| 0.7118        | 11.76 | 200  | 0.7012          | 0.1534   | 0.2007        | 0.4466           | nan                | 0.7352      | 0.1138      | 0.2300      | 0.5548      | 0.0         | 0.0         | 0.0         | nan         | 0.0168       | 0.0284       | 0.3280      | 0.0           | 0.6079 | 0.1081 | 0.2084 | 0.4120 | 0.0    | 0.0    | 0.0    | nan    | 0.0167  | 0.0276  | 0.3064 |
| 0.5567        | 17.65 | 300  | 0.5686          | 0.1896   | 0.2372        | 0.4810           | nan                | 0.6994      | 0.2332      | 0.3522      | 0.5913      | 0.0         | 0.0         | 0.0         | nan         | 0.0389       | 0.0765       | 0.3806      | 0.0           | 0.6382 | 0.2142 | 0.3023 | 0.4563 | 0.0    | 0.0    | 0.0    | nan    | 0.0386  | 0.0714  | 0.3649 |
| 0.5054        | 23.53 | 400  | 0.5441          | 0.2473   | 0.3075        | 0.5803           | nan                | 0.7991      | 0.4241      | 0.4885      | 0.5970      | 0.0         | 0.0         | 0.0         | nan         | 0.1535       | 0.1388       | 0.4745      | 0.0           | 0.7215 | 0.3725 | 0.4107 | 0.4908 | 0.0    | 0.0    | 0.0    | nan    | 0.1486  | 0.1228  | 0.4537 |
| 0.4344        | 29.41 | 500  | 0.5188          | 0.2706   | 0.3382        | 0.5967           | nan                | 0.7810      | 0.4337      | 0.4668      | 0.7031      | 0.0         | 0.0         | 0.0         | nan         | 0.2612       | 0.2644       | 0.4721      | 0.0           | 0.7121 | 0.3916 | 0.4164 | 0.5372 | 0.0    | 0.0    | 0.0    | nan    | 0.2398  | 0.2236  | 0.4558 |
| 0.3796        | 35.29 | 600  | 0.5032          | 0.2669   | 0.3315        | 0.5911           | nan                | 0.7953      | 0.4343      | 0.4050      | 0.6920      | 0.0         | 0.0         | 0.0         | nan         | 0.2841       | 0.2321       | 0.4717      | 0.0           | 0.7196 | 0.3965 | 0.3778 | 0.5273 | 0.0    | 0.0    | 0.0    | nan    | 0.2589  | 0.1996  | 0.4568 |
| 0.3888        | 41.18 | 700  | 0.4801          | 0.2798   | 0.3461        | 0.6037           | nan                | 0.7862      | 0.4532      | 0.4667      | 0.6983      | 0.0         | 0.0         | 0.0         | nan         | 0.3065       | 0.2590       | 0.4908      | 0.0           | 0.7192 | 0.4127 | 0.4292 | 0.5444 | 0.0    | 0.0    | 0.0    | nan    | 0.2756  | 0.2216  | 0.4746 |
| 0.3467        | 47.06 | 800  | 0.4753          | 0.2822   | 0.3478        | 0.6061           | nan                | 0.7919      | 0.4585      | 0.4857      | 0.6814      | 0.0         | 0.0         | 0.0         | nan         | 0.3131       | 0.2640       | 0.4831      | 0.0           | 0.7259 | 0.4196 | 0.4424 | 0.5402 | 0.0    | 0.0    | 0.0    | nan    | 0.2813  | 0.2262  | 0.4685 |
| 0.3757        | 52.94 | 900  | 0.4746          | 0.2841   | 0.3507        | 0.6084           | nan                | 0.7915      | 0.4646      | 0.4834      | 0.6858      | 0.0         | 0.0         | 0.0         | nan         | 0.3160       | 0.2747       | 0.4910      | 0.0           | 0.7252 | 0.4232 | 0.4411 | 0.5427 | 0.0    | 0.0    | 0.0    | nan    | 0.2832  | 0.2342  | 0.4759 |
| 0.3616        | 58.82 | 1000 | 0.4788          | 0.2860   | 0.3537        | 0.6116           | nan                | 0.7931      | 0.4687      | 0.4837      | 0.6922      | 0.0         | 0.0         | 0.0         | nan         | 0.3193       | 0.2830       | 0.4970      | 0.0           | 0.7262 | 0.4259 | 0.4411 | 0.5449 | 0.0    | 0.0    | 0.0    | nan    | 0.2856  | 0.2407  | 0.4817 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0