File size: 18,176 Bytes
5cee4bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: other
base_model: nvidia/mit-b3
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b3-finetuned-segments-outputs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b3-finetuned-segments-outputs

This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the unreal-hug/REAL_DATASET_SEG_401_6_lbls dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3002
- Mean Iou: 0.2829
- Mean Accuracy: 0.3326
- Overall Accuracy: 0.6026
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.7852
- Accuracy Rv: 0.5699
- Accuracy Ra: 0.5380
- Accuracy La: 0.6208
- Accuracy Vs: 0.0
- Accuracy As: 0.0
- Accuracy Mk: 0.0004
- Accuracy Tk: nan
- Accuracy Asd: 0.1783
- Accuracy Vsd: 0.1873
- Accuracy Ak: 0.4458
- Iou Unlabeled: 0.0
- Iou Lv: 0.7310
- Iou Rv: 0.5182
- Iou Ra: 0.5178
- Iou La: 0.5526
- Iou Vs: 0.0
- Iou As: 0.0
- Iou Mk: 0.0004
- Iou Tk: nan
- Iou Asd: 0.1728
- Iou Vsd: 0.1827
- Iou Ak: 0.4361

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:|
| 0.4253        | 0.62  | 100  | 0.4599          | 0.1588   | 0.2152        | 0.4965           | nan                | 0.8879      | 0.0778      | 0.1004      | 0.5637      | 0.0         | 0.0         | 0.0         | nan         | 0.0120       | 0.0509       | 0.4590      | 0.0           | 0.6799 | 0.0770 | 0.0985 | 0.3899 | 0.0    | 0.0    | 0.0    | nan    | 0.0120  | 0.0509  | 0.4386 |
| 0.3839        | 1.25  | 200  | 0.3598          | 0.2325   | 0.2929        | 0.5740           | nan                | 0.8720      | 0.4761      | 0.6272      | 0.2194      | 0.0         | 0.0         | 0.0         | nan         | 0.0102       | 0.2038       | 0.5201      | 0.0           | 0.8020 | 0.4259 | 0.4142 | 0.2085 | 0.0    | 0.0    | 0.0    | nan    | 0.0102  | 0.1964  | 0.4999 |
| 0.4634        | 1.88  | 300  | 0.3361          | 0.3031   | 0.3870        | 0.6197           | nan                | 0.7362      | 0.7347      | 0.2986      | 0.7550      | 0.0         | 0.0         | 0.0         | nan         | 0.3070       | 0.4629       | 0.5752      | 0.0           | 0.6984 | 0.5947 | 0.2894 | 0.5089 | 0.0    | 0.0    | 0.0    | nan    | 0.2756  | 0.4265  | 0.5410 |
| 0.147         | 2.5   | 400  | 0.3123          | 0.3081   | 0.3772        | 0.5772           | nan                | 0.6525      | 0.4740      | 0.6282      | 0.5966      | 0.0         | 0.0         | 0.0002      | nan         | 0.2846       | 0.5934       | 0.5425      | 0.0           | 0.6202 | 0.4429 | 0.5296 | 0.5133 | 0.0    | 0.0    | 0.0002 | nan    | 0.2597  | 0.5196  | 0.5033 |
| 0.2044        | 3.12  | 500  | 0.3104          | 0.2918   | 0.3459        | 0.5719           | nan                | 0.7327      | 0.5989      | 0.5243      | 0.4087      | 0.0         | 0.0         | 0.0046      | nan         | 0.0585       | 0.5632       | 0.5678      | 0.0           | 0.6887 | 0.5466 | 0.4931 | 0.3770 | 0.0    | 0.0    | 0.0045 | nan    | 0.0583  | 0.4945  | 0.5471 |
| 0.3223        | 3.75  | 600  | 0.3078          | 0.3341   | 0.4038        | 0.6417           | nan                | 0.6870      | 0.5831      | 0.7323      | 0.7609      | 0.0019      | 0.0         | 0.0267      | nan         | 0.2290       | 0.4286       | 0.5887      | 0.0           | 0.6482 | 0.5377 | 0.6608 | 0.6435 | 0.0019 | 0.0    | 0.0255 | nan    | 0.2199  | 0.3893  | 0.5488 |
| 0.275         | 4.38  | 700  | 0.3081          | 0.3007   | 0.3562        | 0.5801           | nan                | 0.7267      | 0.3140      | 0.5325      | 0.6536      | 0.0024      | 0.0         | 0.0         | nan         | 0.2228       | 0.5105       | 0.5992      | 0.0           | 0.6833 | 0.2982 | 0.5065 | 0.5827 | 0.0024 | 0.0    | 0.0    | nan    | 0.2110  | 0.4492  | 0.5741 |
| 0.2679        | 5.0   | 800  | 0.3002          | 0.2829   | 0.3326        | 0.6026           | nan                | 0.7852      | 0.5699      | 0.5380      | 0.6208      | 0.0         | 0.0         | 0.0004      | nan         | 0.1783       | 0.1873       | 0.4458      | 0.0           | 0.7310 | 0.5182 | 0.5178 | 0.5526 | 0.0    | 0.0    | 0.0004 | nan    | 0.1728  | 0.1827  | 0.4361 |
| 0.3721        | 5.62  | 900  | 0.3100          | 0.3449   | 0.4111        | 0.6774           | nan                | 0.8066      | 0.6839      | 0.6907      | 0.6722      | 0.0004      | 0.0         | 0.0002      | nan         | 0.2097       | 0.5078       | 0.5401      | 0.0           | 0.7558 | 0.6115 | 0.6389 | 0.6063 | 0.0004 | 0.0    | 0.0002 | nan    | 0.2043  | 0.4613  | 0.5147 |
| 0.2418        | 6.25  | 1000 | 0.3161          | 0.3769   | 0.4608        | 0.7076           | nan                | 0.7978      | 0.6939      | 0.6991      | 0.7553      | 0.1402      | 0.0         | 0.0         | nan         | 0.2148       | 0.6464       | 0.6604      | 0.0           | 0.7465 | 0.6110 | 0.6455 | 0.6508 | 0.1308 | 0.0    | 0.0    | nan    | 0.2046  | 0.5357  | 0.6210 |
| 0.5517        | 6.88  | 1100 | 0.3622          | 0.1738   | 0.2011        | 0.3603           | nan                | 0.5002      | 0.2451      | 0.4020      | 0.3224      | 0.0287      | 0.0         | 0.0143      | nan         | 0.1725       | 0.1302       | 0.1956      | 0.0           | 0.4829 | 0.2368 | 0.3610 | 0.3027 | 0.0279 | 0.0    | 0.0139 | nan    | 0.1660  | 0.1262  | 0.1944 |
| 0.2611        | 7.5   | 1200 | 0.3240          | 0.3572   | 0.4346        | 0.6530           | nan                | 0.7703      | 0.6570      | 0.6721      | 0.5853      | 0.1717      | 0.0         | 0.0561      | nan         | 0.3176       | 0.5672       | 0.5490      | 0.0           | 0.7190 | 0.5879 | 0.5838 | 0.5265 | 0.1576 | 0.0    | 0.0520 | nan    | 0.2832  | 0.4852  | 0.5341 |
| 0.2422        | 8.12  | 1300 | 0.3206          | 0.3382   | 0.4095        | 0.6283           | nan                | 0.7598      | 0.5413      | 0.6799      | 0.5747      | 0.1393      | 0.0         | 0.1071      | nan         | 0.2918       | 0.4583       | 0.5432      | 0.0           | 0.7139 | 0.4894 | 0.5792 | 0.5128 | 0.1306 | 0.0    | 0.0900 | nan    | 0.2601  | 0.4134  | 0.5313 |
| 0.2           | 8.75  | 1400 | 0.3110          | 0.3299   | 0.3976        | 0.5977           | nan                | 0.6984      | 0.4791      | 0.6668      | 0.6132      | 0.2240      | 0.0         | 0.0000      | nan         | 0.3035       | 0.4994       | 0.4917      | 0.0           | 0.6626 | 0.4281 | 0.5904 | 0.5516 | 0.2026 | 0.0    | 0.0000 | nan    | 0.2767  | 0.4409  | 0.4754 |
| 0.1095        | 9.38  | 1500 | 0.3375          | 0.2732   | 0.3235        | 0.5205           | nan                | 0.5957      | 0.4483      | 0.5939      | 0.5724      | 0.1094      | 0.0         | 0.0005      | nan         | 0.2502       | 0.2124       | 0.4518      | 0.0           | 0.5689 | 0.4004 | 0.5432 | 0.5122 | 0.1038 | 0.0    | 0.0005 | nan    | 0.2293  | 0.2068  | 0.4398 |
| 0.2373        | 10.0  | 1600 | 0.3453          | 0.3066   | 0.3658        | 0.5723           | nan                | 0.6940      | 0.5507      | 0.5989      | 0.5415      | 0.2547      | 0.0         | 0.0         | nan         | 0.1549       | 0.4018       | 0.4611      | 0.0           | 0.6560 | 0.5007 | 0.5402 | 0.4888 | 0.2231 | 0.0    | 0.0    | nan    | 0.1519  | 0.3680  | 0.4442 |
| 0.0756        | 10.62 | 1700 | 0.3413          | 0.3699   | 0.4457        | 0.6868           | nan                | 0.7934      | 0.6758      | 0.6577      | 0.7146      | 0.2091      | 0.0         | 0.0075      | nan         | 0.2043       | 0.5427       | 0.6520      | 0.0           | 0.7465 | 0.6060 | 0.6120 | 0.6207 | 0.1863 | 0.0    | 0.0071 | nan    | 0.1908  | 0.4923  | 0.6071 |
| 0.1072        | 11.25 | 1800 | 0.3736          | 0.2889   | 0.3434        | 0.5518           | nan                | 0.6798      | 0.5118      | 0.6135      | 0.5297      | 0.1772      | 0.0         | 0.0195      | nan         | 0.1954       | 0.3432       | 0.3636      | 0.0           | 0.6444 | 0.4854 | 0.5561 | 0.4786 | 0.1539 | 0.0    | 0.0183 | nan    | 0.1788  | 0.3106  | 0.3523 |
| 0.1216        | 11.88 | 1900 | 0.3648          | 0.3248   | 0.3879        | 0.6056           | nan                | 0.7039      | 0.5606      | 0.6138      | 0.6566      | 0.1644      | 0.0         | 0.0080      | nan         | 0.2637       | 0.3991       | 0.5087      | 0.0           | 0.6665 | 0.5153 | 0.5725 | 0.5704 | 0.1453 | 0.0    | 0.0074 | nan    | 0.2402  | 0.3677  | 0.4877 |
| 0.1401        | 12.5  | 2000 | 0.3436          | 0.3537   | 0.4292        | 0.6524           | nan                | 0.7521      | 0.6339      | 0.6030      | 0.7209      | 0.1334      | 0.0         | 0.0988      | nan         | 0.3603       | 0.4304       | 0.5592      | 0.0           | 0.7059 | 0.5504 | 0.5546 | 0.6319 | 0.1235 | 0.0    | 0.0846 | nan    | 0.3103  | 0.3901  | 0.5391 |
| 0.1436        | 13.12 | 2100 | 0.3869          | 0.3156   | 0.3744        | 0.5828           | nan                | 0.7025      | 0.4233      | 0.5510      | 0.6780      | 0.1886      | 0.0         | 0.0510      | nan         | 0.2666       | 0.3543       | 0.5291      | 0.0           | 0.6640 | 0.3923 | 0.5214 | 0.5994 | 0.1688 | 0.0    | 0.0440 | nan    | 0.2386  | 0.3359  | 0.5075 |
| 0.0907        | 13.75 | 2200 | 0.3739          | 0.3237   | 0.3853        | 0.6046           | nan                | 0.7534      | 0.5218      | 0.6138      | 0.5515      | 0.2576      | 0.0         | 0.0377      | nan         | 0.2211       | 0.3392       | 0.5574      | 0.0           | 0.7090 | 0.4937 | 0.5742 | 0.4980 | 0.2077 | 0.0    | 0.0343 | nan    | 0.2079  | 0.3158  | 0.5206 |
| 0.147         | 14.38 | 2300 | 0.3751          | 0.3667   | 0.4460        | 0.6265           | nan                | 0.6614      | 0.6418      | 0.5923      | 0.7208      | 0.2728      | 0.0         | 0.0884      | nan         | 0.2801       | 0.5884       | 0.6142      | 0.0           | 0.6267 | 0.5779 | 0.5584 | 0.6181 | 0.2302 | 0.0    | 0.0739 | nan    | 0.2553  | 0.5113  | 0.5816 |
| 0.0612        | 15.0  | 2400 | 0.3993          | 0.3152   | 0.3777        | 0.5802           | nan                | 0.6818      | 0.5538      | 0.6054      | 0.5973      | 0.1225      | 0.0         | 0.0486      | nan         | 0.3157       | 0.4393       | 0.4124      | 0.0           | 0.6439 | 0.5163 | 0.5435 | 0.5331 | 0.1134 | 0.0    | 0.0438 | nan    | 0.2698  | 0.3983  | 0.4056 |
| 0.0854        | 15.62 | 2500 | 0.4168          | 0.3039   | 0.3621        | 0.5569           | nan                | 0.6689      | 0.4421      | 0.5384      | 0.5871      | 0.1719      | 0.0         | 0.0233      | nan         | 0.2696       | 0.3985       | 0.5212      | 0.0           | 0.6317 | 0.4223 | 0.4957 | 0.5199 | 0.1508 | 0.0    | 0.0213 | nan    | 0.2457  | 0.3702  | 0.4855 |
| 0.0806        | 16.25 | 2600 | 0.4017          | 0.3460   | 0.4169        | 0.6201           | nan                | 0.7083      | 0.6388      | 0.6258      | 0.5904      | 0.1749      | 0.0         | 0.1096      | nan         | 0.2301       | 0.4998       | 0.5915      | 0.0           | 0.6659 | 0.5768 | 0.5736 | 0.5358 | 0.1552 | 0.0    | 0.0903 | nan    | 0.2099  | 0.4466  | 0.5522 |
| 0.137         | 16.88 | 2700 | 0.4268          | 0.2834   | 0.3348        | 0.5474           | nan                | 0.6984      | 0.4311      | 0.5213      | 0.5677      | 0.0688      | 0.0         | 0.0219      | nan         | 0.1758       | 0.4672       | 0.3961      | 0.0           | 0.6564 | 0.4077 | 0.4842 | 0.5061 | 0.0638 | 0.0    | 0.0208 | nan    | 0.1653  | 0.4276  | 0.3855 |
| 0.0375        | 17.5  | 2800 | 0.4117          | 0.2816   | 0.3339        | 0.5291           | nan                | 0.6131      | 0.4906      | 0.6136      | 0.5158      | 0.0881      | 0.0         | 0.0292      | nan         | 0.2010       | 0.3391       | 0.4484      | 0.0           | 0.5803 | 0.4398 | 0.5575 | 0.4677 | 0.0809 | 0.0    | 0.0272 | nan    | 0.1899  | 0.3179  | 0.4369 |
| 0.0654        | 18.12 | 2900 | 0.4334          | 0.3470   | 0.4190        | 0.6392           | nan                | 0.7536      | 0.6040      | 0.6625      | 0.6205      | 0.1722      | 0.0         | 0.1006      | nan         | 0.3133       | 0.4067       | 0.5566      | 0.0           | 0.7052 | 0.5599 | 0.5923 | 0.5496 | 0.1515 | 0.0    | 0.0809 | nan    | 0.2670  | 0.3782  | 0.5320 |
| 0.0759        | 18.75 | 3000 | 0.4226          | 0.3140   | 0.3770        | 0.5661           | nan                | 0.6390      | 0.5546      | 0.6119      | 0.5289      | 0.1559      | 0.0         | 0.0158      | nan         | 0.2478       | 0.4546       | 0.5611      | 0.0           | 0.6063 | 0.5000 | 0.5449 | 0.4774 | 0.1370 | 0.0    | 0.0148 | nan    | 0.2238  | 0.4182  | 0.5319 |
| 0.1047        | 19.38 | 3100 | 0.4350          | 0.3058   | 0.3639        | 0.5608           | nan                | 0.6803      | 0.5207      | 0.5750      | 0.5243      | 0.1947      | 0.0         | 0.0335      | nan         | 0.2706       | 0.3744       | 0.4656      | 0.0           | 0.6424 | 0.4914 | 0.5193 | 0.4712 | 0.1700 | 0.0    | 0.0307 | nan    | 0.2409  | 0.3498  | 0.4479 |
| 0.146         | 20.0  | 3200 | 0.4320          | 0.3138   | 0.3796        | 0.5634           | nan                | 0.6526      | 0.4673      | 0.5958      | 0.5859      | 0.2021      | 0.0         | 0.0287      | nan         | 0.2886       | 0.4822       | 0.4933      | 0.0           | 0.6188 | 0.4135 | 0.5438 | 0.5232 | 0.1710 | 0.0    | 0.0244 | nan    | 0.2502  | 0.4367  | 0.4706 |
| 0.1012        | 20.62 | 3300 | 0.4231          | 0.3294   | 0.3967        | 0.5944           | nan                | 0.6824      | 0.5358      | 0.6163      | 0.5851      | 0.1819      | 0.0         | 0.0243      | nan         | 0.3027       | 0.4514       | 0.5866      | 0.0           | 0.6449 | 0.4899 | 0.5645 | 0.5214 | 0.1589 | 0.0    | 0.0213 | nan    | 0.2605  | 0.4193  | 0.5423 |
| 0.1004        | 21.25 | 3400 | 0.4312          | 0.3369   | 0.4078        | 0.6181           | nan                | 0.7167      | 0.5900      | 0.6539      | 0.5973      | 0.1753      | 0.0         | 0.0330      | nan         | 0.2538       | 0.5161       | 0.5419      | 0.0           | 0.6767 | 0.5234 | 0.5867 | 0.5300 | 0.1515 | 0.0    | 0.0276 | nan    | 0.2273  | 0.4649  | 0.5176 |
| 0.0837        | 21.88 | 3500 | 0.4385          | 0.3202   | 0.3844        | 0.5932           | nan                | 0.6960      | 0.5322      | 0.6045      | 0.5847      | 0.1779      | 0.0         | 0.0238      | nan         | 0.2458       | 0.3876       | 0.5910      | 0.0           | 0.6549 | 0.4828 | 0.5517 | 0.5181 | 0.1554 | 0.0    | 0.0210 | nan    | 0.2195  | 0.3639  | 0.5549 |
| 0.1212        | 22.5  | 3600 | 0.4473          | 0.3209   | 0.3857        | 0.5969           | nan                | 0.7202      | 0.5315      | 0.5947      | 0.5830      | 0.1908      | 0.0         | 0.0382      | nan         | 0.2426       | 0.4183       | 0.5379      | 0.0           | 0.6752 | 0.4757 | 0.5356 | 0.5134 | 0.1673 | 0.0    | 0.0335 | nan    | 0.2203  | 0.3885  | 0.5200 |
| 0.0698        | 23.12 | 3700 | 0.4587          | 0.3033   | 0.3629        | 0.5581           | nan                | 0.6604      | 0.5113      | 0.5777      | 0.5497      | 0.1981      | 0.0         | 0.0128      | nan         | 0.2450       | 0.3808       | 0.4930      | 0.0           | 0.6252 | 0.4590 | 0.5288 | 0.4903 | 0.1688 | 0.0    | 0.0121 | nan    | 0.2188  | 0.3569  | 0.4760 |
| 0.1282        | 23.75 | 3800 | 0.4509          | 0.3262   | 0.3922        | 0.5981           | nan                | 0.6936      | 0.5414      | 0.6098      | 0.6114      | 0.1966      | 0.0         | 0.0250      | nan         | 0.2791       | 0.3966       | 0.5680      | 0.0           | 0.6536 | 0.4908 | 0.5585 | 0.5406 | 0.1666 | 0.0    | 0.0219 | nan    | 0.2447  | 0.3730  | 0.5383 |
| 0.0473        | 24.38 | 3900 | 0.4496          | 0.3334   | 0.4008        | 0.6063           | nan                | 0.7051      | 0.5613      | 0.6237      | 0.5998      | 0.1989      | 0.0         | 0.0330      | nan         | 0.2805       | 0.4479       | 0.5579      | 0.0           | 0.6636 | 0.5091 | 0.5670 | 0.5331 | 0.1698 | 0.0    | 0.0286 | nan    | 0.2470  | 0.4166  | 0.5329 |
| 0.069         | 25.0  | 4000 | 0.4442          | 0.3404   | 0.4109        | 0.6170           | nan                | 0.7116      | 0.5806      | 0.6320      | 0.6083      | 0.2084      | 0.0         | 0.0391      | nan         | 0.2758       | 0.4698       | 0.5837      | 0.0           | 0.6682 | 0.5204 | 0.5734 | 0.5400 | 0.1764 | 0.0    | 0.0335 | nan    | 0.2434  | 0.4342  | 0.5547 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0