danielhanchen
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,38 @@ tags:
|
|
13 |
|
14 |
## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-v3-all-versions-677cf5cfd7df8b7815fc723c) for versions of Deepseek V3 including bf16 and original formats.***
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
18 |
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|
|
|
13 |
|
14 |
## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-v3-all-versions-677cf5cfd7df8b7815fc723c) for versions of Deepseek V3 including bf16 and original formats.***
|
15 |
|
16 |
+
| Quants | Disk Size | Details |
|
17 |
+
| ------ | ------- | ------- |
|
18 |
+
| [Q2_K_XS](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_XS) | 207GB | Q2 everything, Q4 embed, Q6 lm_head |
|
19 |
+
| [Q2_K_L](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_L) | 228GB | Q3 down_proj Q2 rest, Q4 embed, Q6 lm_head |
|
20 |
+
| [Q3_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q3_K_M) | 298GB | Standard Q3_K_M |
|
21 |
+
| [Q4_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M) | 377GB | Standard Q4_K_M |
|
22 |
+
| [Q5_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q5_K_M) | 443GB | Standard Q5_K_M |
|
23 |
+
| [Q6_K](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q6_K) | 513GB | Standard Q6_K |
|
24 |
+
| [Q8_0](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q8_0) | 712GB | Standard Q8_0 |
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
1. [Q2_K_XS](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_XS) should run ok in ~40GB of CPU / GPU VRAM with automatic llama.cpp offloading.
|
29 |
+
2. Use K quantization (not V quantization)
|
30 |
+
3. Do not forget about `<|User|>` and `<|Assistant|>` tokens! - Or use a chat template formatter
|
31 |
+
4. Example with Q5_0 K quantized cache (V quantized cache doesn't work):
|
32 |
+
```bash
|
33 |
+
./llama.cpp/llama-cli
|
34 |
+
--model unsloth/DeepSeek-V3-GGUF/DeepSeek-V3-Q2_K_XS/DeepSeek-V3-Q2_K_XS-00001-of-00005.gguf
|
35 |
+
--cache-type-k q5_0
|
36 |
+
--prompt '<|User|>What is 1+1?<|Assistant|>'
|
37 |
+
```
|
38 |
+
Example output:
|
39 |
+
```txt
|
40 |
+
The sum of 1 and 1 is **2**. Here's a simple step-by-step breakdown:
|
41 |
+
|
42 |
+
1. **Start with the number 1.**
|
43 |
+
2. **Add another 1 to it.**
|
44 |
+
3. **The result is 2.**
|
45 |
+
|
46 |
+
So, **1 + 1 = 2**. [end of text]
|
47 |
+
```
|
48 |
|
49 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
50 |
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|