danielhanchen commited on
Commit
e250f0a
·
verified ·
1 Parent(s): 9236c8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -13,6 +13,38 @@ tags:
13
 
14
  ## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-v3-all-versions-677cf5cfd7df8b7815fc723c) for versions of Deepseek V3 including bf16 and original formats.***
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  # Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
18
  We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
 
13
 
14
  ## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-v3-all-versions-677cf5cfd7df8b7815fc723c) for versions of Deepseek V3 including bf16 and original formats.***
15
 
16
+ | Quants | Disk Size | Details |
17
+ | ------ | ------- | ------- |
18
+ | [Q2_K_XS](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_XS) | 207GB | Q2 everything, Q4 embed, Q6 lm_head |
19
+ | [Q2_K_L](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_L) | 228GB | Q3 down_proj Q2 rest, Q4 embed, Q6 lm_head |
20
+ | [Q3_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q3_K_M) | 298GB | Standard Q3_K_M |
21
+ | [Q4_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M) | 377GB | Standard Q4_K_M |
22
+ | [Q5_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q5_K_M) | 443GB | Standard Q5_K_M |
23
+ | [Q6_K](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q6_K) | 513GB | Standard Q6_K |
24
+ | [Q8_0](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q8_0) | 712GB | Standard Q8_0 |
25
+
26
+
27
+
28
+ 1. [Q2_K_XS](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q2_K_XS) should run ok in ~40GB of CPU / GPU VRAM with automatic llama.cpp offloading.
29
+ 2. Use K quantization (not V quantization)
30
+ 3. Do not forget about `<|User|>` and `<|Assistant|>` tokens! - Or use a chat template formatter
31
+ 4. Example with Q5_0 K quantized cache (V quantized cache doesn't work):
32
+ ```bash
33
+ ./llama.cpp/llama-cli
34
+ --model unsloth/DeepSeek-V3-GGUF/DeepSeek-V3-Q2_K_XS/DeepSeek-V3-Q2_K_XS-00001-of-00005.gguf
35
+ --cache-type-k q5_0
36
+ --prompt '<|User|>What is 1+1?<|Assistant|>'
37
+ ```
38
+ Example output:
39
+ ```txt
40
+ The sum of 1 and 1 is **2**. Here's a simple step-by-step breakdown:
41
+
42
+ 1. **Start with the number 1.**
43
+ 2. **Add another 1 to it.**
44
+ 3. **The result is 2.**
45
+
46
+ So, **1 + 1 = 2**. [end of text]
47
+ ```
48
 
49
  # Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
50
  We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb