Feature Extraction
clip
vision
File size: 8,580 Bytes
d757384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
language:
- en
- de
- es
- fr
- it
- ja
- ko
- pl
- ru
- tr
- zh
- ar
---
<h1 align="center">UForm</h1>
<h3 align="center">
Multi-Modal Inference Library<br/>
For Semantic Search Applications<br/>
</h3>

---

UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space!

This is model card of the __Multilingual model__ (21 languages) with:

* 12 layers BERT (8 layers for unimodal encoding and rest layers for multimodal encoding)
* ViT-B/16 (image resolution is 224x224)

The model was trained on balanced multilingual dataset.

If you need English model, check [this](https://huggingface.co/unum-cloud/uform-vl-english).

## Evaluation

For all evaluations, the multimodal part was used unless otherwise stated.

**Monolingual**

| Dataset |  Recall@1 |  Recall@5 | Recall@10 |
| :-------- | ------: | --------: | --------: |
| Zero-Shot Flickr | 0.558 | 0.813 | 0.874 |
| MS-COCO (train split was in training data) | 0.401 | 0.680 | 0.781 |

**Multilingual**

[XTD-10](https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10)

 Metric is recall@10


|  English |   German |  Spanish |   French |  Italian |  Russian | Japanese |   Korean |  Turkish |  Chinese | Polish |
| -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------:
      96.1 |     93.5 |     95.7 |     94.1 |     94.4 |     90.4 |     90.2 |     91.3 |     95.2 |     93.8 |   95.8 |


[COCO-SM](https://github.com/kimihailv/coco-sm/tree/main)

For this evaluation only unimodal part was used.

Recall

| Target Language       | OpenCLIP @ 1 | UForm @ 1     | OpenCLIP @ 5 | UForm @ 5     | OpenCLIP @ 10 | UForm @ 10     | Speakers |
| :-------------------- | -----------: | ------------: | -----------: | -------------:| ------------: | --------------:| -------: |
| Arabic             |         22.7 |      **31.7** |         44.9 |      **57.8** |          55.8 |       **69.2** |    274 M |
| Armenian           |          5.6 |      **22.0** |         14.3 |      **44.7** |          20.2 |       **56.0** |      4 M |
| Chinese            |         27.3 |      **32.2** |         51.3 |      **59.0** |          62.1 |       **70.5** |  1'118 M |
| English            |     **37.8** |          37.7 |         63.5 |      **65.0** |          73.5 |       **75.9** |  1'452 M |
| French             |         31.3 |      **35.4** |         56.5 |      **62.6** |          67.4 |       **73.3** |    274 M |
| German             |         31.7 |      **35.1** |         56.9 |      **62.2** |          67.4 |       **73.3** |    134 M |
| Hebrew             |         23.7 |      **26.7** |         46.3 |      **51.8** |          57.0 |       **63.5** |      9 M |
| Hindi              |         20.7 |      **31.3** |         42.5 |      **57.9** |          53.7 |       **69.6** |    602 M |
| Indonesian         |         26.9 |      **30.7** |         51.4 |      **57.0** |          62.7 |       **68.6** |    199 M |
| Italian            |         31.3 |      **34.9** |         56.7 |      **62.1** |          67.1 |       **73.1** |     67 M |
| Japanese           |         27.4 |      **32.6** |         51.5 |      **59.2** |          62.6 |       **70.6** |    125 M |
| Korean             |         24.4 |      **31.5** |         48.1 |      **57.8** |          59.2 |       **69.2** |     81 M |
| Persian            |         24.0 |      **28.8** |         47.0 |      **54.6** |          57.8 |       **66.2** |     77 M |
| Polish             |         29.2 |      **33.6** |         53.9 |      **60.1** |          64.7 |       **71.3** |     41 M |
| Portuguese         |         31.6 |      **32.7** |         57.1 |      **59.6** |          67.9 |       **71.0** |    257 M |
| Russian            |         29.9 |      **33.9** |         54.8 |      **60.9** |          65.8 |       **72.0** |    258 M |
| Spanish            |         32.6 |      **35.6** |         58.0 |      **62.8** |          68.8 |       **73.7** |    548 M |
| Thai               |         21.5 |      **28.7** |         43.0 |      **54.6** |          53.7 |       **66.0** |     61 M |
| Turkish            |         25.5 |      **33.0** |         49.1 |      **59.6** |          60.3 |       **70.8** |     88 M |
| Ukranian           |         26.0 |      **30.6** |         49.9 |      **56.7** |          60.9 |       **68.1** |     41 M |
| Vietnamese         |         25.4 |      **28.3** |         49.2 |      **53.9** |          60.3 |       **65.5** |     85 M |
|                       |              |               |              |               |               |                |          |
| Mean                  |     26.5±6.4 |  **31.8±3.5** |     49.8±9.8 |  **58.1±4.5** |     60.4±10.6 |   **69.4±4.3** |        - |
| Google Translate      |     27.4±6.3 |  **31.5±3.5** |     51.1±9.5 |  **57.8±4.4** |     61.7±10.3 |   **69.1±4.3** |        - |
| Microsoft Translator  |     27.2±6.4 |  **31.4±3.6** |     50.8±9.8 |  **57.7±4.7** |     61.4±10.6 |   **68.9±4.6** |        - |
| Meta NLLB             |     24.9±6.7 |  **32.4±3.5** |    47.5±10.3 |  **58.9±4.5** |     58.2±11.2 |   **70.2±4.3** |        - |

NDCG@20

|               |     Arabic |     Armenian |     Chinese |     French |     German |     Hebrew |     Hindi |     Indonesian |     Italian |     Japanese |     Korean |     Persian |     Polish |     Portuguese |     Russian |     Spanish |     Thai |     Turkish |     Ukranian |     Vietnamese |   Mean (all) | Mean (Google Translate) | Mean(Microsoft Translator) | Mean(NLLB)
| :------------ | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: |
| OpenCLIP NDCG | 0.639 | 0.204 | 0.731 | 0.823 | 0.806 | 0.657 | 0.616 | 0.733 | 0.811 | 0.737 | 0.686 | 0.667 | 0.764 | 0.832 | 0.777 | 0.849 | 0.606 | 0.701 | 0.704 | 0.697 | 0.716 ± 0.149 | 0.732 ± 0.145 | 0.730 ± 0.149 | 0.686 ± 0.158
| UForm NDCG    | 0.868 | 0.691 | 0.880 | 0.932 | 0.927 | 0.791 | 0.879 | 0.870 | 0.930 | 0.885 | 0.869 | 0.831 | 0.897 | 0.897 | 0.906 | 0.939 | 0.822 | 0.898 | 0.851 | 0.818 | 0.875 ± 0.064 | 0.869 ± 0.063 | 0.869 ± 0.066 | 0.888 ± 0.064

## Installation

```bash
pip install uform
```

## Usage

To load the model:

```python
import uform

model = uform.get_model('unum-cloud/uform-vl-english')
```

To encode data:

```python
from PIL import Image

text = 'a small red panda in a zoo'
image = Image.open('red_panda.jpg')

image_data = model.preprocess_image(image)
text_data = model.preprocess_text(text)

image_embedding = model.encode_image(image_data)
text_embedding = model.encode_text(text_data)
joint_embedding = model.encode_multimodal(image=image_data, text=text_data)
```

To get features:

```python
image_features, image_embedding = model.encode_image(image_data, return_features=True)
text_features, text_embedding = model.encode_text(text_data, return_features=True)
```

These features can later be used to produce joint multimodal encodings faster, as the first layers of the transformer can be skipped:

```python
joint_embedding = model.encode_multimodal(
    image_features=image_features,
    text_features=text_features,
    attention_mask=text_data['attention_mask']
)
```

There are two options to calculate semantic compatibility between an image and a text: [Cosine Similarity](#cosine-similarity) and [Matching Score](#matching-score).

### Cosine Similarity

```python
import torch.nn.functional as F

similarity = F.cosine_similarity(image_embedding, text_embedding)
```

The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.

__Pros__:

- Computationally cheap.
- Only unimodal embeddings are required, unimodal encoding is faster than joint encoding.
- Suitable for retrieval in large collections.

__Cons__:

- Takes into account only coarse-grained features.


### Matching Score 

Unlike cosine similarity, unimodal embedding are not enough.
Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.

```python
score = model.get_matching_scores(joint_embedding)
```

__Pros__:

- Joint embedding captures fine-grained features.
- Suitable for re-ranking – sorting retrieval result.

__Cons__:

- Resource-intensive.
- Not suitable for retrieval in large collections.