init
Browse files- 1_Pooling/config.json +7 -0
- README.md +173 -0
- config.json +37 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +11 -0
- model.safetensors +3 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
language: ko
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
# kf-deberta-multitask
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. You can check the training recipes on [GitHub](https://github.com/upskyy/kf-deberta-multitask).
|
15 |
+
|
16 |
+
<!--- Describe your model here -->
|
17 |
+
|
18 |
+
## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
|
31 |
+
|
32 |
+
model = SentenceTransformer("upskyy/kf-deberta-multitask")
|
33 |
+
embeddings = model.encode(sentences)
|
34 |
+
print(embeddings)
|
35 |
+
```
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("upskyy/kf-deberta-multitask")
|
58 |
+
model = AutoModel.from_pretrained("upskyy/kf-deberta-multitask")
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, mean pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
## Evaluation Results
|
75 |
+
|
76 |
+
<!--- Describe how your model was evaluated -->
|
77 |
+
|
78 |
+
KorSTS, KorNLI 학습 데이터셋으로 멀티 태스크 학습을 진행한 후 KorSTS 평가 데이터셋으로 평가한 결과입니다.
|
79 |
+
|
80 |
+
- Cosine Pearson: 85.75
|
81 |
+
- Cosine Spearman: 86.25
|
82 |
+
- Manhattan Pearson: 84.80
|
83 |
+
- Manhattan Spearman: 85.27
|
84 |
+
- Euclidean Pearson: 84.79
|
85 |
+
- Euclidean Spearman: 85.25
|
86 |
+
- Dot Pearson: 82.93
|
87 |
+
- Dot Spearman: 82.86
|
88 |
+
|
89 |
+
## Training
|
90 |
+
|
91 |
+
The model was trained with the parameters:
|
92 |
+
|
93 |
+
**DataLoader**:
|
94 |
+
|
95 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4442 with parameters:
|
96 |
+
|
97 |
+
```
|
98 |
+
{'batch_size': 128}
|
99 |
+
```
|
100 |
+
|
101 |
+
**Loss**:
|
102 |
+
|
103 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
104 |
+
|
105 |
+
```
|
106 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
107 |
+
```
|
108 |
+
|
109 |
+
**DataLoader**:
|
110 |
+
|
111 |
+
`torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
|
112 |
+
|
113 |
+
```
|
114 |
+
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
115 |
+
```
|
116 |
+
|
117 |
+
**Loss**:
|
118 |
+
|
119 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
120 |
+
|
121 |
+
Parameters of the fit()-Method:
|
122 |
+
|
123 |
+
```
|
124 |
+
{
|
125 |
+
"epochs": 10,
|
126 |
+
"evaluation_steps": 1000,
|
127 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
128 |
+
"max_grad_norm": 1,
|
129 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
130 |
+
"optimizer_params": {
|
131 |
+
"lr": 2e-05
|
132 |
+
},
|
133 |
+
"scheduler": "WarmupLinear",
|
134 |
+
"steps_per_epoch": null,
|
135 |
+
"warmup_steps": 719,
|
136 |
+
"weight_decay": 0.01
|
137 |
+
}
|
138 |
+
```
|
139 |
+
|
140 |
+
## Full Model Architecture
|
141 |
+
|
142 |
+
```
|
143 |
+
SentenceTransformer(
|
144 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
145 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
146 |
+
)
|
147 |
+
```
|
148 |
+
|
149 |
+
## Citing & Authors
|
150 |
+
|
151 |
+
<!--- Describe where people can find more information -->
|
152 |
+
|
153 |
+
```bibtex
|
154 |
+
@proceedings{jeon-etal-2023-kfdeberta,
|
155 |
+
title = {KF-DeBERTa: Financial Domain-specific Pre-trained Language Model},
|
156 |
+
author = {Eunkwang Jeon, Jungdae Kim, Minsang Song, and Joohyun Ryu},
|
157 |
+
booktitle = {Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology},
|
158 |
+
moth = {oct},
|
159 |
+
year = {2023},
|
160 |
+
publisher = {Korean Institute of Information Scientists and Engineers},
|
161 |
+
url = {http://www.hclt.kr/symp/?lnb=conference},
|
162 |
+
pages = {143--148},
|
163 |
+
}
|
164 |
+
```
|
165 |
+
|
166 |
+
```bibtex
|
167 |
+
@article{ham2020kornli,
|
168 |
+
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
|
169 |
+
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
|
170 |
+
journal={arXiv preprint arXiv:2004.03289},
|
171 |
+
year={2020}
|
172 |
+
}
|
173 |
+
```
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "kakaobank/kf-deberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"conv_act": "gelu",
|
8 |
+
"conv_kernel_size": 0,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-07,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"max_relative_positions": -1,
|
17 |
+
"model_type": "deberta-v2",
|
18 |
+
"norm_rel_ebd": "layer_norm",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"pooler_dropout": 0,
|
23 |
+
"pooler_hidden_act": "gelu",
|
24 |
+
"pooler_hidden_size": 768,
|
25 |
+
"pos_att_type": [
|
26 |
+
"p2c",
|
27 |
+
"c2p"
|
28 |
+
],
|
29 |
+
"position_biased_input": false,
|
30 |
+
"position_buckets": 256,
|
31 |
+
"relative_attention": true,
|
32 |
+
"share_att_key": true,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.36.1",
|
35 |
+
"type_vocab_size": 0,
|
36 |
+
"vocab_size": 130000
|
37 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.36.1",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.8662204956565079,0.8701433627944452,0.8565443779563348,0.8613773571708476,0.8560883635989125,0.8606584545362987,0.8202927967048539,0.8194888085039882
|
3 |
+
1,-1,0.8739205955213473,0.8758925251709859,0.8653773959530131,0.8692820156859796,0.8647304570456534,0.8685202340180903,0.8314283990734999,0.8297083397755294
|
4 |
+
2,-1,0.873226762046955,0.8742324546170553,0.861951917180206,0.8673471958368025,0.8610252712798507,0.8664120314862117,0.8305024207148536,0.8302137280264562
|
5 |
+
3,-1,0.8748335444633338,0.8761404940944174,0.8666428028248511,0.8715341827306609,0.8659880687821292,0.8707590362848057,0.8329152465384382,0.8299645392415027
|
6 |
+
4,-1,0.8751374826185992,0.875617777648221,0.8628455122246389,0.8685438059808782,0.8621695407968285,0.867591484262702,0.8386198188718612,0.8382529150976307
|
7 |
+
5,-1,0.8757745589038899,0.8748982130889459,0.863903994123835,0.8692367380744607,0.8636271881511799,0.8688871933476968,0.8378372858859178,0.8365435829510706
|
8 |
+
6,-1,0.8749608603797978,0.875302211591622,0.8651230938909044,0.870590183854361,0.8644454465711514,0.8697119537070153,0.8394965792357566,0.8371347185924382
|
9 |
+
7,-1,0.8756642281042165,0.8754720764788898,0.8655350874061635,0.8707828014258668,0.8648885722256727,0.8700175677982847,0.8387960733830822,0.8356778955178322
|
10 |
+
8,-1,0.8764719870550455,0.8762953653098642,0.8664626408021754,0.8717207397997367,0.865835356014391,0.8710521094420978,0.8403957938235846,0.8376097829789138
|
11 |
+
9,-1,0.8761662638270564,0.8756781922811445,0.8662225168104593,0.8713532075159957,0.865570210666156,0.8706111322674874,0.8409601713130908,0.8385279740072908
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acb29ec9aa58f05568fa6e42b8621fa701fc8fd1873f1a4a5f9122b907596c66
|
3 |
+
size 741185640
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3390b04cd5ca99e759732e19660344e27e5107a09c755bfb6cf7a6e48afc92bd
|
3 |
+
size 741238901
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8574826210027622,0.8625167208630782,0.8478939146405619,0.8524540783146085,0.8480117776348778,0.8527497844953591,0.8293372739387574,0.8286020232145503
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "BertTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|