File size: 1,557 Bytes
d37ce85
88e86d8
d37ce85
 
46c23ad
 
 
 
 
d37ce85
 
 
 
 
 
 
 
 
 
88e86d8
d37ce85
88e86d8
 
 
 
 
d37ce85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c23ad
 
d37ce85
 
 
88e86d8
b4a2e31
d37ce85
46c23ad
 
88e86d8
 
 
46c23ad
 
d37ce85
 
 
46c23ad
d37ce85
4158b01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: cer_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cer_model

This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4081
- Precision: 0.9099
- Recall: 0.8471
- F1: 0.8774
- Accuracy: 0.9268

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0179        | 1.0   | 4841 | 0.4081          | 0.9099    | 0.8471 | 0.8774 | 0.9268   |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1