|
from typing import Any, Dict |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
return_dict=True, |
|
device_map="auto", |
|
load_in_8bit=True, |
|
torch_dtype=dtype, |
|
trust_remote_code=True, |
|
) |
|
|
|
self.generation_config = model.generation_config |
|
self.generation_config.max_new_tokens = 1000 |
|
self.generation_config.temperature = 0.7 |
|
self.generation_config.num_return_sequences = 1 |
|
self.generation_config.pad_token_id = tokenizer.eos_token_id |
|
self.generation_config.eos_token_id = tokenizer.eos_token_id |
|
|
|
self.pipeline = transformers.pipeline( |
|
"text-generation", model=model, tokenizer=tokenizer |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
prompt = data.pop("inputs", data) |
|
result = self.pipeline( |
|
prompt, |
|
max_length=1000, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
pad_token_id=self.generation_config.pad_token_id, |
|
eos_token_id=self.generation_config.eos_token_id, |
|
return_full_text=True |
|
) |
|
return {"generated_text": result} |
|
|
|
|