tools / hoho /vis.py
dmytromishkin's picture
add vertex visualization option
da4ae8f
raw
history blame
5.81 kB
import trimesh
import numpy as np
from copy import deepcopy
from PIL import Image
from . import color_mappings
def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05):
'''draws a 3d cylinder along the line (p1, p2)'''
# check colors
if len(c) == 1:
c = [c[0]]*4
elif len(c) == 3:
c = [*c, 255]
elif len(c) != 4:
raise ValueError(f'{c} is not a valid color (must have 1,3, or 4 elements).')
# compute length and direction of segment
p1, p2 = np.asarray(p1), np.asarray(p2)
l = np.linalg.norm(p2-p1)
direction = (p2 - p1) / l
# point z along direction of segment
T = np.eye(4)
T[:3, 2] = direction
T[:3, 3] = (p1+p2)/2
#reorthogonalize basis
b0, b1 = T[:3, 0], T[:3, 1]
if np.abs(np.dot(b0, direction)) < np.abs(np.dot(b1, direction)):
T[:3, 1] = -np.cross(b0, direction)
else:
T[:3, 0] = np.cross(b1, direction)
# generate and transform mesh
mesh = trimesh.primitives.Cylinder(radius=radius, height=l, transform=T)
# apply uniform color
mesh.visual.vertex_colors = np.ones_like(mesh.visual.vertex_colors)*c
return mesh
def show_wf(row, radius=10, show_vertices=False):
EDGE_CLASSES = ['eave',
'ridge',
'step_flashing',
'rake',
'flashing',
'post',
'valley',
'hip',
'transition_line']
out_meshes = []
if show_vertices:
out_meshes.extend([trimesh.primitives.Sphere(radius=radius+5, center = center, color=(255,0,0)) for center in row['wf_vertices']])
if 'edge_semantics' not in row:
print ("Warning: edge semantics is not here, skipping")
out_meshes.extend([line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]])
elif len(np.stack(row['wf_edges'])) == len(row['edge_semantics']):
out_meshes.extend([line(a,b, radius=radius, c=color_mappings.gestalt_color_mapping[EDGE_CLASSES[cls_id]]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])])
else:
print ("Warning: edge semantics has different length compared to edges, skipping semantics")
out_meshes.extend([line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]])
return out_meshes
# return [line(a,b, radius=radius, c=color_mappings.edge_colors[cls_id]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])]
def show_grid(edges, meshes=None, row_length=5):
'''
edges: list of list of meshes
meshes: optional corresponding list of meshes
row_length: number of meshes per row
returns trimesh.Scene()
'''
T = np.eye(4)
out = []
edges = [sum(e[1:], e[0]) for e in edges]
row_height = 1.1 * max((e.extents for e in edges), key=lambda e: e[1])[1]
col_width = 1.1 * max((e.extents for e in edges), key=lambda e: e[0])[0]
# print(row_height, col_width)
if meshes is None:
meshes = [None]*len(edges)
for i, (gt, mesh) in enumerate(zip(edges, meshes), start=0):
mesh = deepcopy(mesh)
gt = deepcopy(gt)
if i%row_length != 0:
T[0, 3] += col_width
else:
T[0, 3] = 0
T[1, 3] += row_height
# print(T[0,3]/col_width, T[2,3]/row_height)
if mesh is not None:
mesh.apply_transform(T)
out.append(mesh)
gt.apply_transform(T)
out.append(gt)
out.extend([mesh, gt])
return trimesh.Scene(out)
def visualize_order_images(row_order):
return create_image_grid(row_order['ade20k'] + row_order['gestalt'] + [visualize_depth(dm) for dm in row_order['depthcm']], num_per_row=len(row_order['ade20k']))
def create_image_grid(images, target_length=312, num_per_row=2):
# Calculate the target size for the first image
first_img = images[0]
aspect_ratio = first_img.width / first_img.height
new_width = int((target_length ** 2 * aspect_ratio) ** 0.5)
new_height = int((target_length ** 2 / aspect_ratio) ** 0.5)
# Resize the first image
resized_images = [img.resize((new_width, new_height), Image.Resampling.LANCZOS) for img in images]
# Calculate the grid size
num_rows = (len(resized_images) + num_per_row - 1) // num_per_row
grid_width = new_width * num_per_row
grid_height = new_height * num_rows
# Create a new image for the grid
grid_img = Image.new('RGB', (grid_width, grid_height))
# Paste the images into the grid
for i, img in enumerate(resized_images):
x_offset = (i % num_per_row) * new_width
y_offset = (i // num_per_row) * new_height
grid_img.paste(img, (x_offset, y_offset))
return grid_img
import matplotlib.pyplot as plt
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
depth = np.array(depth)
if min_depth is None:
min_depth = np.min(depth)
if max_depth is None:
max_depth = np.max(depth)
# Normalize the depth to be between 0 and 1
depth = (depth - min_depth) / (max_depth - min_depth)
depth = np.clip(depth, 0, 1)
# Use the matplotlib colormap to convert the depth to an RGB image
cmap = plt.get_cmap(cmap)
depth_image = (cmap(depth) * 255).astype(np.uint8)
# Convert the depth image to a PIL image
depth_image = Image.fromarray(depth_image)
return depth_image