separate-cv (#5)
Browse files- separate cv_ins and cv_del + bump to 0.4 (5f7484847a971a72cf4c160f4a4bb00f7db7a077)
- fix docs (default for cv_del was stated incorrectly) (60d33017b34aa90e6e7b8625fe2dbab202461780)
- remove mean distance option for cv (bb60056dc5c76eca8e8277a8fec3a82550fb2c25)
Co-authored-by: Jack Langerman <jacklangerman@users.noreply.huggingface.co>
- hoho/wed.py +21 -21
- setup.py +1 -1
hoho/wed.py
CHANGED
@@ -28,40 +28,40 @@ def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
|
28 |
return transformed_verts
|
29 |
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
'''The function computes the Wireframe Edge Distance (WED) between two graphs.
|
33 |
pd_vertices: list of predicted vertices
|
34 |
pd_edges: list of predicted edges
|
35 |
gt_vertices: list of ground truth vertices
|
36 |
gt_edges: list of ground truth edges
|
37 |
-
|
|
|
38 |
ce: edge cost (multiplier of the edge length for edge deletion and insertion, default is 1.0)
|
39 |
normalized: if True, the WED is normalized by the total length of the ground truth edges
|
40 |
preregister: if True, the predicted vertices have their mean and scale matched to the ground truth vertices
|
41 |
'''
|
42 |
|
43 |
-
# Vertex coordinates are in centimeters. When cv and ce are set to 100.0 and 1.0 respectively,
|
44 |
-
# missing a vertex is equivanlent predicting it 1 meter away from the ground truth vertex.
|
45 |
-
# This is equivalent to setting cv=1 and ce=1 when the vertex coordinates are in meters.
|
46 |
-
# When a negative cv value is set (the default behavior), cv is reset to 1/4 of the diameter of the ground truth wireframe.
|
47 |
-
|
48 |
pd_vertices = np.array(pd_vertices)
|
49 |
gt_vertices = np.array(gt_vertices)
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
cv = diameter / 4.0
|
55 |
-
# Cost of addining or deleting a vertex is set to 1/4 of the diameter of the ground truth mesh
|
56 |
|
57 |
# Step 0: Prenormalize / preregister
|
58 |
if preregister:
|
59 |
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
60 |
-
|
61 |
-
|
62 |
-
pd_edges = np.array(pd_edges)
|
63 |
-
gt_edges = np.array(gt_edges)
|
64 |
|
|
|
65 |
# Step 1: Bipartite Matching
|
66 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
67 |
row_ind, col_ind = linear_sum_assignment(distances)
|
@@ -70,15 +70,15 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=-1, ce=1.0, nor
|
|
70 |
# Step 2: Vertex Translation
|
71 |
translation_costs = np.sum(distances[row_ind, col_ind])
|
72 |
|
73 |
-
#
|
74 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
75 |
-
deletion_costs =
|
76 |
|
77 |
-
# Step
|
78 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
79 |
-
insertion_costs =
|
80 |
|
81 |
-
# Step
|
82 |
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
83 |
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
|
84 |
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
|
|
|
28 |
return transformed_verts
|
29 |
|
30 |
|
31 |
+
def update_cv(cv, gt_vertices):
|
32 |
+
if cv < 0:
|
33 |
+
diameter = cdist(gt_vertices, gt_vertices).max()
|
34 |
+
# Cost of adding or deleting a vertex is set to -cv times the diameter of the ground truth wireframe
|
35 |
+
cv = -cv * diameter
|
36 |
+
return cv
|
37 |
+
|
38 |
+
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv_ins=-1/2, cv_del=-1/4, ce=1.0, normalized=True, preregister=True, single_scale=True):
|
39 |
'''The function computes the Wireframe Edge Distance (WED) between two graphs.
|
40 |
pd_vertices: list of predicted vertices
|
41 |
pd_edges: list of predicted edges
|
42 |
gt_vertices: list of ground truth vertices
|
43 |
gt_edges: list of ground truth edges
|
44 |
+
cv_ins: vertex insertion cost: if positive, the cost in centimeters of inserting vertex, if negative, multiplies diameter to compute cost (default is -1/2)
|
45 |
+
cv_del: vertex deletion cost: if positive, the cost in centimeters of deleting a vertex, if negative, multiplies diameter to compute cost (default is -1/4)
|
46 |
ce: edge cost (multiplier of the edge length for edge deletion and insertion, default is 1.0)
|
47 |
normalized: if True, the WED is normalized by the total length of the ground truth edges
|
48 |
preregister: if True, the predicted vertices have their mean and scale matched to the ground truth vertices
|
49 |
'''
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
pd_vertices = np.array(pd_vertices)
|
52 |
gt_vertices = np.array(gt_vertices)
|
53 |
+
pd_edges = np.array(pd_edges)
|
54 |
+
gt_edges = np.array(gt_edges)
|
55 |
|
56 |
+
|
57 |
+
cv_del = update_cv(cv_del, gt_vertices)
|
58 |
+
cv_ins = update_cv(cv_ins, gt_vertices)
|
|
|
|
|
59 |
|
60 |
# Step 0: Prenormalize / preregister
|
61 |
if preregister:
|
62 |
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
|
65 |
# Step 1: Bipartite Matching
|
66 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
67 |
row_ind, col_ind = linear_sum_assignment(distances)
|
|
|
70 |
# Step 2: Vertex Translation
|
71 |
translation_costs = np.sum(distances[row_ind, col_ind])
|
72 |
|
73 |
+
# Step 3: Vertex Deletion
|
74 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
75 |
+
deletion_costs = cv_del * len(unmatched_pd_indices)
|
76 |
|
77 |
+
# Step 4: Vertex Insertion
|
78 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
79 |
+
insertion_costs = cv_ins * len(unmatched_gt_indices)
|
80 |
|
81 |
+
# Step 5: Edge Deletion and Insertion
|
82 |
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
83 |
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
|
84 |
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
|
setup.py
CHANGED
@@ -6,7 +6,7 @@ with open('requirements.txt') as f:
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
-
version='0.0.
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
+
version='0.0.4',
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|