import os import json import shutil from pathlib import Path from typing import Dict import warnings import contextlib import tempfile from PIL import Image import io import webdataset as wds import numpy as np import importlib import subprocess from PIL import ImageFile from huggingface_hub.utils._headers import build_hf_headers # note: using _headers ImageFile.LOAD_TRUNCATED_IMAGES = True LOCAL_DATADIR = None def setup(local_dir='./data/usm-training-data/data'): # If we are in the test environment, we need to link the data directory to the correct location tmp_datadir = Path('/tmp/data/data') local_test_datadir = Path('./data/usm-test-data-x/data') local_val_datadir = Path(local_dir) os.system('pwd') os.system('ls -lahtr .') if tmp_datadir.exists() and not local_test_datadir.exists(): global LOCAL_DATADIR LOCAL_DATADIR = local_test_datadir # shutil.move(datadir, './usm-test-data-x/data') print(f"Linking {tmp_datadir} to {LOCAL_DATADIR} (we are in the test environment)") LOCAL_DATADIR.parent.mkdir(parents=True, exist_ok=True) LOCAL_DATADIR.symlink_to(tmp_datadir) else: LOCAL_DATADIR = local_val_datadir print(f"Using {LOCAL_DATADIR} as the data directory (we are running locally)") if not LOCAL_DATADIR.exists(): warnings.warn(f"Data directory {LOCAL_DATADIR} does not exist: creating it...") LOCAL_DATADIR.mkdir(parents=True) return LOCAL_DATADIR def download_package(package_name, path_to_save='packages'): """ Downloads a package using pip and saves it to a specified directory. Parameters: package_name (str): The name of the package to download. path_to_save (str): The path to the directory where the package will be saved. """ try: # pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all: subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name, "-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory "--platform", "manylinux1_x86_64", # Specify the platform "--python-version", "38", # Specify the Python version "--only-binary=:all:"]) # Download only binary packages print(f'Package "{package_name}" downloaded successfully') except subprocess.CalledProcessError as e: print(f'Failed to downloaded package "{package_name}". Error: {e}') def install_package_from_local_file(package_name, folder='packages'): """ Installs a package from a local .whl file or a directory containing .whl files using pip. Parameters: path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files. """ try: pth = str(Path(folder) / package_name) subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install", "--no-index", # Do not use package index "--find-links", pth, # Look for packages in the specified directory or at the file package_name]) # Specify the package to install print(f"Package installed successfully from {pth}") except subprocess.CalledProcessError as e: print(f"Failed to install package from {pth}. Error: {e}") def importt(module_name, as_name=None): """ Imports a module and returns it. Parameters: module_name (str): The name of the module to import. as_name (str): The name to use for the imported module. If None, the original module name will be used. Returns: The imported module. """ for _ in range(2): try: if as_name is None: print(f'imported {module_name}') return importlib.import_module(module_name) else: print(f'imported {module_name} as {as_name}') return importlib.import_module(module_name, as_name) except ModuleNotFoundError as e: install_package_from_local_file(module_name) print(f"Failed to import module {module_name}. Error: {e}") def prepare_submission(): # Download packages from requirements.txt if Path('requirements.txt').exists(): print('downloading packages from requirements.txt') Path('packages').mkdir(exist_ok=True) with open('requirements.txt') as f: packages = f.readlines() for p in packages: download_package(p.strip()) print('all packages downloaded. Don\'t foget to include the packages in the submission by adding them with git lfs.') def Rt_to_eye_target(im, K, R, t): height = im.height focal_length = K[0,0] fov = 2.0 * np.arctan2((0.5 * height), focal_length) / (np.pi / 180.0) x_axis, y_axis, z_axis = R eye = -(R.T @ t).squeeze() z_axis = z_axis.squeeze() target = eye + z_axis up = -y_axis return eye, target, up, fov ########## general utilities ########## @contextlib.contextmanager def working_directory(path): """Changes working directory and returns to previous on exit.""" prev_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd) @contextlib.contextmanager def temp_working_directory(): with tempfile.TemporaryDirectory(dir='.') as D: with working_directory(D): yield ############# Dataset ############# def proc(row, split='train'): out = {} out['__key__'] = None out['__imagekey__'] = [] for k, v in row.items(): key_parts = k.split('.') colname = key_parts[0] if colname == 'ade20k': out['__imagekey__'].append(key_parts[1]) if colname in {'ade20k', 'depthcm', 'gestalt'}: if colname in out: out[colname].append(v) else: out[colname] = [v] elif colname in {'wireframe', 'mesh'}: out.update({a: b for a,b in v.items()}) elif colname in 'kr': out[colname.upper()] = v else: out[colname] = v return Sample(out) from . import read_write_colmap def decode_colmap(s): with temp_working_directory(): with open('points3D.bin', 'wb') as stream: stream.write(s['points3d']) with open('cameras.bin', 'wb') as stream: stream.write(s['cameras']) with open('images.bin', 'wb') as stream: stream.write(s['images']) cameras, images, points3D = read_write_colmap.read_model( path='.', ext='.bin' ) return cameras, images, points3D def decode(row): cameras, images, points3D = decode_colmap(row) out = {} for k, v in row.items(): # colname = k.split('.')[0] if k in {'ade20k', 'depthcm', 'gestalt'}: # print(k, len(v), type(v)) v = [Image.open(io.BytesIO(im)) for im in v] if k in out: out[k].extend(v) else: out[k] = v elif k in {'wireframe', 'mesh'}: # out.update({a: b.tolist() for a,b in v.items()}) v = dict(np.load(io.BytesIO(v))) out.update({a: b for a,b in v.items()}) elif k in 'kr': out[k.upper()] = v elif k == 'cameras': out[k] = cameras elif k == 'images': out[k] = images elif k =='points3d': out[k] = points3D else: out[k] = v return Sample(out) class Sample(Dict): def __repr__(self): return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()}) def get_params(): exmaple_param_dict = { "competition_id": "usm3d/S23DR", "competition_type": "script", "metric": "custom", "token": "hf_**********************************", "team_id": "local-test-team_id", "submission_id": "local-test-submission_id", "submission_id_col": "__key__", "submission_cols": [ "__key__", "wf_edges", "wf_vertices", "edge_semantics" ], "submission_rows": 180, "output_path": ".", "submission_repo": "