ppo-LunarLander-v0 / config.json
utkusaglm's picture
Upload PPO LunarLander-v1 trained agent
efda16a
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x120590280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x120590310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1205903a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x120590430>", "_build": "<function ActorCriticPolicy._build at 0x1205904c0>", "forward": "<function ActorCriticPolicy.forward at 0x120590550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1205905e0>", "_predict": "<function ActorCriticPolicy._predict at 0x120590670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x120590700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x120590790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x120590820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x1204ae780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 160771584, "_total_timesteps": 160770976, "_num_timesteps_at_start": 160670976, "seed": null, "action_noise": null, "start_time": 1651739185.429329, "learning_rate": 0.0003, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.7817771287862456e-06, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsJC5Mqg6cUCUhpRSlIwBbJRLq4wBdJRHQN77OsX3xnZ1fZQoaAZoCWgPQwjW/PhLi65yQJSGlFKUaBVLpGgWR0De+zxSKm8/dX2UKGgGaAloD0MIbVhTWZQ3dECUhpRSlGgVS6RoFkdA3vs/YyO7x3V9lChoBmgJaA9DCAndJXEWSnFAlIaUUpRoFUukaBZHQN77P2hVU+91fZQoaAZoCWgPQwixNPCjWqBzQJSGlFKUaBVLvmgWR0De+0EORT0hdX2UKGgGaAloD0MIF7t9Vhm7cUCUhpRSlGgVS8ZoFkdA3vtBn889wHV9lChoBmgJaA9DCEIibeNPUXNAlIaUUpRoFUuvaBZHQN77Rc8gZCR1fZQoaAZoCWgPQwg1071O6spzQJSGlFKUaBVLrmgWR0De+0c5WBBidX2UKGgGaAloD0MIXB5rRkZhcECUhpRSlGgVS59oFkdA3vtIjj7yhHV9lChoBmgJaA9DCKmfNxXpwXFAlIaUUpRoFUuCaBZHQN77SWA08/51fZQoaAZoCWgPQwgSE9Tw7TNxQJSGlFKUaBVLlWgWR0De+0xyfcvedX2UKGgGaAloD0MIeXdkrDZFdECUhpRSlGgVS6RoFkdA3vtNo1k1/HV9lChoBmgJaA9DCEBtVKcDsHJAlIaUUpRoFUupaBZHQN77TabONYN1fZQoaAZoCWgPQwhm+iXi7dBxQJSGlFKUaBVLu2gWR0De+05HjIaMdX2UKGgGaAloD0MIHxDoTFpGb0CUhpRSlGgVS5VoFkdA3vtPCJGe+XV9lChoBmgJaA9DCClAFMyYY29AlIaUUpRoFUuYaBZHQN77T12vB8B1fZQoaAZoCWgPQwhPQBNhA5lxQJSGlFKUaBVLk2gWR0De+1M6/7BPdX2UKGgGaAloD0MIG55eKcsOdECUhpRSlGgVS8loFkdA3vtUkAggYHV9lChoBmgJaA9DCM9OBkcJk3FAlIaUUpRoFUuQaBZHQN77V8x0uDl1fZQoaAZoCWgPQwicb0T3rKRxQJSGlFKUaBVLlGgWR0De+1gdNnGsdX2UKGgGaAloD0MICFVq9kCvckCUhpRSlGgVS3xoFkdA3vtZvpyIYXV9lChoBmgJaA9DCNU/iGRIqHFAlIaUUpRoFUucaBZHQN77WoPwuul1fZQoaAZoCWgPQwhHWipvx0lyQJSGlFKUaBVLr2gWR0De+1tlvqC6dX2UKGgGaAloD0MILNhGPJnOckCUhpRSlGgVS5BoFkdA3vtbpda+vnV9lChoBmgJaA9DCJpbIayGenJAlIaUUpRoFUuPaBZHQN77Xlsk6cR1fZQoaAZoCWgPQwjlCYSdovVyQJSGlFKUaBVLomgWR0De+175GjKxdX2UKGgGaAloD0MI1xh0Quhmc0CUhpRSlGgVS5ZoFkdA3vtfclPac3V9lChoBmgJaA9DCOi/B68dN3JAlIaUUpRoFUuaaBZHQN77X3r6ciJ1fZQoaAZoCWgPQwjk1w+xATdyQJSGlFKUaBVLp2gWR0De+2KG34KydX2UKGgGaAloD0MI+WpHcQ5CcUCUhpRSlGgVS5ZoFkdA3vtjT+ee4HV9lChoBmgJaA9DCLGLogf+3nFAlIaUUpRoFUubaBZHQN77Zh3FDOV1fZQoaAZoCWgPQwh/g/bqI7pyQJSGlFKUaBVLrWgWR0De+2iFHrhSdX2UKGgGaAloD0MINnhflUvrckCUhpRSlGgVS5toFkdA3vtpHww0wnV9lChoBmgJaA9DCK3boPbbaXBAlIaUUpRoFUuVaBZHQN77aa2nbZh1fZQoaAZoCWgPQwjVCWgi7I5yQJSGlFKUaBVLv2gWR0De+2o1ZTybdX2UKGgGaAloD0MICMiXUEGmcUCUhpRSlGgVS6doFkdA3vtsOR1YAHV9lChoBmgJaA9DCNOh0/Num3FAlIaUUpRoFUuLaBZHQN77bINI9Tx1fZQoaAZoCWgPQwhjey3ofQVyQJSGlFKUaBVLimgWR0De+22B7NSqdX2UKGgGaAloD0MIwJMWLmt3cECUhpRSlGgVS4hoFkdA3vttxusLfHV9lChoBmgJaA9DCDYBhuWPEHJAlIaUUpRoFUuraBZHQN77c4X40uV1fZQoaAZoCWgPQwjhtyHGK3NyQJSGlFKUaBVLkWgWR0De+3QZVGTcdX2UKGgGaAloD0MIns4VpUTUc0CUhpRSlGgVS8FoFkdA3vt0sTWXknV9lChoBmgJaA9DCOuLhLYclXBAlIaUUpRoFUuaaBZHQN77dX+MqBp1fZQoaAZoCWgPQwgbLnJP135wQJSGlFKUaBVLmGgWR0De+3YI2OyWdX2UKGgGaAloD0MIrMWnANjjcUCUhpRSlGgVS6BoFkdA3vt5pjtojHV9lChoBmgJaA9DCCEGuvbFM3FAlIaUUpRoFUuMaBZHQN77fb0e2eB1fZQoaAZoCWgPQwiYhXZOc9BxQJSGlFKUaBVLtGgWR0De+36hzvJBdX2UKGgGaAloD0MIWyTtRl8cc0CUhpRSlGgVS6toFkdA3vuBqPfbbnV9lChoBmgJaA9DCKMDkrCvMnJAlIaUUpRoFUuMaBZHQN77ga+vhZR1fZQoaAZoCWgPQwgiMxe4vLRwQJSGlFKUaBVLkWgWR0De+4LkZJkHdX2UKGgGaAloD0MIUp55Oazsc0CUhpRSlGgVS81oFkdA3vuHcUuct3V9lChoBmgJaA9DCEc6AyOvx3BAlIaUUpRoFUuVaBZHQN77iKm0mdB1fZQoaAZoCWgPQwitTWN7rTF0QJSGlFKUaBVLr2gWR0De+4s4o7V8dX2UKGgGaAloD0MILWACt25ic0CUhpRSlGgVS8doFkdA3vuL4YJmd3V9lChoBmgJaA9DCJG28Seqj3NAlIaUUpRoFUu8aBZHQN77jDj3mFJ1fZQoaAZoCWgPQwge4EkLV5JzQJSGlFKUaBVLpGgWR0De+4w8IRh+dX2UKGgGaAloD0MIGcqJdlXicUCUhpRSlGgVS6ZoFkdA3vuNcVQAMnV9lChoBmgJaA9DCLoQqz9C9HJAlIaUUpRoFUu6aBZHQN77jb52yLR1fZQoaAZoCWgPQwhybhPu1SNyQJSGlFKUaBVLpmgWR0De+439wWFfdX2UKGgGaAloD0MIVg+Yh8yfcUCUhpRSlGgVS6NoFkdA3vuQdBBzFXV9lChoBmgJaA9DCDntKTlnNnJAlIaUUpRoFUuXaBZHQN77lIc3l0Z1fZQoaAZoCWgPQwi5b7VO3JVyQJSGlFKUaBVLs2gWR0De+5WeumrKdX2UKGgGaAloD0MI6Pf9m5eNc0CUhpRSlGgVS6BoFkdA3vuZ/lhgE3V9lChoBmgJaA9DCDyE8dN4jnJAlIaUUpRoFUuuaBZHQN77mqAavRt1fZQoaAZoCWgPQwj6DRMNUqxyQJSGlFKUaBVLsWgWR0De+5rr+o9+dX2UKGgGaAloD0MIvTYbK7F7ckCUhpRSlGgVS4ZoFkdA3vub2rn1WnV9lChoBmgJaA9DCJdvfVjvxXJAlIaUUpRoFUulaBZHQN77nUZBLPF1fZQoaAZoCWgPQwiDbcSTnclzQJSGlFKUaBVLxmgWR0De+55xdY4idX2UKGgGaAloD0MISYYcWw/CckCUhpRSlGgVS5ZoFkdA3vufVyFPBXV9lChoBmgJaA9DCMSY9PcSS3NAlIaUUpRoFUu7aBZHQN77n5uVHFx1fZQoaAZoCWgPQwg9Ctej8LNyQJSGlFKUaBVLsmgWR0De+6CrNnoQdX2UKGgGaAloD0MIyxMIO0Xuc0CUhpRSlGgVS7hoFkdA3vuhOjIq9XV9lChoBmgJaA9DCESkpl0MjXNAlIaUUpRoFUufaBZHQN77okrsjVx1fZQoaAZoCWgPQwisUnqmF+9wQJSGlFKUaBVLm2gWR0De+6KQ9zOpdX2UKGgGaAloD0MIgGQ6dHo7ckCUhpRSlGgVS65oFkdA3vun+Lm6oXV9lChoBmgJaA9DCKmhDcBGb3NAlIaUUpRoFUuhaBZHQN77rAdsBQx1fZQoaAZoCWgPQwj7zcR04UVzQJSGlFKUaBVLr2gWR0De+6wKrq+rdX2UKGgGaAloD0MIeNSYEPO+cUCUhpRSlGgVS5VoFkdA3vutf8/D+HV9lChoBmgJaA9DCDdTIR7JtXFAlIaUUpRoFUuzaBZHQN77tWjKxLV1fZQoaAZoCWgPQwi/KaxU0MFwQJSGlFKUaBVLkWgWR0De+7cADJU6dX2UKGgGaAloD0MIcLIN3EFedECUhpRSlGgVS8RoFkdA3vu3psoDxXV9lChoBmgJaA9DCDVCP1Mv4nFAlIaUUpRoFUubaBZHQN77ud4mkWR1fZQoaAZoCWgPQwit+8dC9P1zQJSGlFKUaBVLtWgWR0De+7wQL/jsdX2UKGgGaAloD0MIHTwTmqRWdECUhpRSlGgVS8hoFkdA3vu8FhoduHV9lChoBmgJaA9DCF0Y6UVtZXRAlIaUUpRoFUuxaBZHQN77vBkI5YJ1fZQoaAZoCWgPQwjr46HvrmJyQJSGlFKUaBVLqGgWR0De+7y34Kx+dX2UKGgGaAloD0MIkzgroibFcUCUhpRSlGgVS6loFkdA3vu8umaYu3V9lChoBmgJaA9DCNY73A5NLnJAlIaUUpRoFUusaBZHQN77v31BdD91fZQoaAZoCWgPQwjGNqlobB1yQJSGlFKUaBVLg2gWR0De+8CbONYKdX2UKGgGaAloD0MIKc+8HDY8cUCUhpRSlGgVS7BoFkdA3vvDJ04io3V9lChoBmgJaA9DCD9z1qfcdXJAlIaUUpRoFUuNaBZHQN77xJ1/2Cd1fZQoaAZoCWgPQwiWCFT/oNJzQJSGlFKUaBVLxGgWR0De+8SYkVvddX2UKGgGaAloD0MI/rrTnecLckCUhpRSlGgVS6doFkdA3vvF+l0o0HV9lChoBmgJaA9DCDV8C+vGh3FAlIaUUpRoFUusaBZHQN77xkxh2GJ1fZQoaAZoCWgPQwhiMepau350QJSGlFKUaBVLz2gWR0De+8bLQokSdX2UKGgGaAloD0MIeVvptRmJcUCUhpRSlGgVS5BoFkdA3vvGz4UN8XV9lChoBmgJaA9DCGqHvyarLnBAlIaUUpRoFUuHaBZHQN77x46r/851fZQoaAZoCWgPQwh+N92yw4VxQJSGlFKUaBVLlGgWR0De+8mQmu1XdX2UKGgGaAloD0MI7fXuj3cZc0CUhpRSlGgVS6BoFkdA3vvL4wyqMnV9lChoBmgJaA9DCNzVq8jopHJAlIaUUpRoFUuvaBZHQN77zLROUMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19176, "n_steps": 1048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.9.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}