--- tags: - generated_from_trainer model-index: - name: layoutlm-custom results: [] --- # layoutlm-custom This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1583 - Noise: {'precision': 0.8818897637795275, 'recall': 0.8736349453978159, 'f1': 0.8777429467084641, 'number': 641} - Signal: {'precision': 0.861198738170347, 'recall': 0.853125, 'f1': 0.8571428571428572, 'number': 640} - Overall Precision: 0.8716 - Overall Recall: 0.8634 - Overall F1: 0.8675 - Overall Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Noise | Signal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3882 | 1.0 | 18 | 0.2617 | {'precision': 0.6654804270462633, 'recall': 0.5834633385335414, 'f1': 0.6217788861180383, 'number': 641} | {'precision': 0.6149732620320856, 'recall': 0.5390625, 'f1': 0.5745212323064114, 'number': 640} | 0.6402 | 0.5613 | 0.5982 | 0.8986 | | 0.1694 | 2.0 | 36 | 0.1752 | {'precision': 0.7387820512820513, 'recall': 0.719188767550702, 'f1': 0.7288537549407115, 'number': 641} | {'precision': 0.709470304975923, 'recall': 0.690625, 'f1': 0.6999208234362629, 'number': 640} | 0.7241 | 0.7049 | 0.7144 | 0.9296 | | 0.1039 | 3.0 | 54 | 0.1356 | {'precision': 0.7865168539325843, 'recall': 0.7644305772230889, 'f1': 0.7753164556962026, 'number': 641} | {'precision': 0.77491961414791, 'recall': 0.753125, 'f1': 0.7638668779714739, 'number': 640} | 0.7807 | 0.7588 | 0.7696 | 0.9439 | | 0.064 | 4.0 | 72 | 0.1342 | {'precision': 0.8220472440944881, 'recall': 0.8143525741029641, 'f1': 0.8181818181818181, 'number': 641} | {'precision': 0.8028391167192429, 'recall': 0.7953125, 'f1': 0.7990580847723705, 'number': 640} | 0.8125 | 0.8048 | 0.8086 | 0.9522 | | 0.0433 | 5.0 | 90 | 0.1241 | {'precision': 0.8544303797468354, 'recall': 0.8424336973478939, 'f1': 0.8483896307934014, 'number': 641} | {'precision': 0.8320126782884311, 'recall': 0.8203125, 'f1': 0.8261211644374509, 'number': 640} | 0.8432 | 0.8314 | 0.8373 | 0.9601 | | 0.0293 | 6.0 | 108 | 0.1274 | {'precision': 0.8650793650793651, 'recall': 0.8502340093603744, 'f1': 0.8575924468922109, 'number': 641} | {'precision': 0.8378378378378378, 'recall': 0.8234375, 'f1': 0.830575256107171, 'number': 640} | 0.8515 | 0.8368 | 0.8441 | 0.9617 | | 0.0199 | 7.0 | 126 | 0.1372 | {'precision': 0.8722397476340694, 'recall': 0.8627145085803433, 'f1': 0.8674509803921568, 'number': 641} | {'precision': 0.8530805687203792, 'recall': 0.84375, 'f1': 0.8483896307934015, 'number': 640} | 0.8627 | 0.8532 | 0.8579 | 0.9640 | | 0.0139 | 8.0 | 144 | 0.1386 | {'precision': 0.8839427662957074, 'recall': 0.8673946957878315, 'f1': 0.8755905511811023, 'number': 641} | {'precision': 0.856687898089172, 'recall': 0.840625, 'f1': 0.8485804416403785, 'number': 640} | 0.8703 | 0.8540 | 0.8621 | 0.9656 | | 0.0126 | 9.0 | 162 | 0.1467 | {'precision': 0.8829113924050633, 'recall': 0.8705148205928237, 'f1': 0.8766692851531814, 'number': 641} | {'precision': 0.8541996830427893, 'recall': 0.8421875, 'f1': 0.848151062155783, 'number': 640} | 0.8686 | 0.8564 | 0.8624 | 0.9654 | | 0.0114 | 10.0 | 180 | 0.1531 | {'precision': 0.8694968553459119, 'recall': 0.8627145085803433, 'f1': 0.8660924040720438, 'number': 641} | {'precision': 0.8472440944881889, 'recall': 0.840625, 'f1': 0.8439215686274509, 'number': 640} | 0.8584 | 0.8517 | 0.8550 | 0.9631 | | 0.0099 | 11.0 | 198 | 0.1581 | {'precision': 0.8703125, 'recall': 0.8689547581903276, 'f1': 0.8696330991412958, 'number': 641} | {'precision': 0.8450704225352113, 'recall': 0.84375, 'f1': 0.8444096950742768, 'number': 640} | 0.8577 | 0.8564 | 0.8570 | 0.9634 | | 0.0064 | 12.0 | 216 | 0.1543 | {'precision': 0.8866141732283465, 'recall': 0.8783151326053042, 'f1': 0.8824451410658307, 'number': 641} | {'precision': 0.8643533123028391, 'recall': 0.85625, 'f1': 0.8602825745682888, 'number': 640} | 0.8755 | 0.8673 | 0.8714 | 0.9659 | | 0.0059 | 13.0 | 234 | 0.1628 | {'precision': 0.8732394366197183, 'recall': 0.8705148205928237, 'f1': 0.871875, 'number': 641} | {'precision': 0.8526645768025078, 'recall': 0.85, 'f1': 0.8513302034428795, 'number': 640} | 0.8630 | 0.8603 | 0.8616 | 0.9645 | | 0.0056 | 14.0 | 252 | 0.1587 | {'precision': 0.878740157480315, 'recall': 0.8705148205928237, 'f1': 0.8746081504702194, 'number': 641} | {'precision': 0.8580441640378549, 'recall': 0.85, 'f1': 0.8540031397174254, 'number': 640} | 0.8684 | 0.8603 | 0.8643 | 0.9651 | | 0.005 | 15.0 | 270 | 0.1583 | {'precision': 0.8818897637795275, 'recall': 0.8736349453978159, 'f1': 0.8777429467084641, 'number': 641} | {'precision': 0.861198738170347, 'recall': 0.853125, 'f1': 0.8571428571428572, 'number': 640} | 0.8716 | 0.8634 | 0.8675 | 0.9656 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0