File size: 3,943 Bytes
9d78ebe
2337f1b
 
 
 
 
 
9d78ebe
2337f1b
 
 
 
 
 
 
 
 
 
 
 
 
9d78ebe
2337f1b
e4258a0
 
2337f1b
 
 
e4258a0
2337f1b
 
 
57e1e46
2337f1b
145e999
 
0b80597
 
 
 
 
 
 
 
 
 
 
 
 
605dc04
 
0b80597
 
 
 
 
 
 
 
 
2337f1b
 
 
 
0b80597
 
 
 
 
 
 
2337f1b
 
 
0b80597
 
 
2337f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec621eb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
language:
- en
library_name: peft
pipeline_tag: text-generation
tags:
- Mistral
license: llama2
model-index:
- name: SpeechlessCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
---

# Mistral-7b-OpenOrca-lora

**This is a test.**


This LoRA model is extracted from the efficient parameter fine-tuned model ([Mistral-7B-OpenOra](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)), and now it needs to be verified whether this LoRA model can achieve comparable performance with the original model.

The final goal is to create a toolkit that can simultaneously load multiple LoRA modules, and automatically switch to the appropriate combination of LoRA modules based on user queries to generate the best answer.

The lora merged model is [here](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged)

The source code is [here](https://github.com/uukuguy/multi_loras)

## Mistral-7B-OpenOrca

- Extract lora model [Mistral-7B-OpenOrca-lora](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora) from [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca);

- Merge the base model [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) with lora model to [Mistral-7B-OpenOrca-lora-merged](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged)

- LLM Evaluation ...

### Local Test

| | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | GSM8K_acc (8-shot) | Open LLM Score |
| ------ | ------ | ------ | ------ | ------ | ------ | ------ |
| Mistral-7B-OpenOrca | **71** | 83 | 61.42 | 45 | 40 | 65.11 |
| **r=256** | 68 | **84** | **64.28** | 46.953 | **41** |  **65.81** |
| r=64 | 67 | 84 | 64.26 | **47.32** | **41** | 65.65 |
| *r=16* | *65* | *83* | *62.84* | *46.95* | *38* | *64.45* |

### Open LLM Leaderboard
| | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | Open LLM Score |
| ------ | ------ | ------ | ------ | ------ | ------ |
| Mistral-7B-SlimOrca | 62.54 | 83.86 | **62.77** | **54.23** |  **65.85** |
| Mistral-7B-OpenOrca | **64.08** | **83.99** | 62.24 | 53.05 |  65.84 |


## lm-evaluation-harness

[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

| Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| Mistral-7B-OpenOrca-lora-merged |
| --- | --- |--- | --- |
| ARC | 64.08 | | |
| HellaSwag | 83.99 | | |
| MMLU | 62.24 | | |
| TruthfulQA | 53.05 | | |
| Average | 65.84 | | |

## HumanEval

| Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora|Mistral-7B-OpenOrca-lora-merged |
| --- | --- | --- | --- |
| humaneval-python | 35.976 | | |


## Training procedure

The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions


- PEFT 0.5.0

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__Mistral-7B-OpenOrca-lora)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 50.72   |
| ARC (25-shot)         | 61.95          |
| HellaSwag (10-shot)   | 83.62    |
| MMLU (5-shot)         | 64.16         |
| TruthfulQA (0-shot)   | 42.74   |
| Winogrande (5-shot)   | 79.08   |
| GSM8K (5-shot)        | 17.29        |
| DROP (3-shot)         | 6.19         |