--- language: - en library_name: peft pipeline_tag: text-generation tags: - Mistral license: llama2 model-index: - name: SpeechlessCoder results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.0 verified: false --- # Mistral-7b-OpenOrca-lora **This is a test.** This LoRA model is extracted from the efficient parameter fine-tuned model ([Mistral-7B-OpenOra](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)), and now it needs to be verified whether this LoRA model can achieve comparable performance with the original model. The final goal is to create a toolkit that can simultaneously load multiple LoRA modules, and automatically switch to the appropriate combination of LoRA modules based on user queries to generate the best answer. The lora merged model is [here](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged) The source code is [here](https://github.com/uukuguy/multi_loras) ## lm-evaluation-harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| | --- | --- |--- | | ARC | 64.08 | | | HellaSwag | 83.99 | | | MMLU | 62.24 | | | TruthfulQA | 53.05 | | | Average | 65.84 | | ## HumanEval | Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| | --- | --- | --- | | humaneval-python | 35.976 | | ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0