--- license: cc-by-nc-4.0 language: - hu - en metrics: - accuracy - f1 model-index: - name: Hun_Eng_RoBERTa_large_Plain results: - task: type: text-classification metrics: - type: accuracy value: 0.80 (hu) / 0.67 (en) - type: f1 value: 0.79 (hu) / 0.67 (en) widget: - text: "A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete szerinti szállításához szükséges adminisztratív okmányban..." example_title: "Incomprehensible" - text: "Az AEO-engedély birtokosainak listáján – keresésre – megjelenő információk: az engedélyes neve, az engedélyt kibocsátó ország..." example_title: "Comprehensible" --- ## Model description Cased fine-tuned `XLM-RoBERTa-large` model for Hungarian and English, trained on datasets provided by the National Tax and Customs Administration - Hungary (NAV) and translated versions of the same dataset using Google Translate API. ## Intended uses & limitations The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines): * **Label_0** - "comprehensible" - The sentence is in Plain Language. * **Label_1** - "not comprehensible" - The sentence is **not** in Plain Language. ## Training Fine-tuned version of the original `xlm-roberta-large` model, trained on a dataset of Hungarian legal and administrative texts. The model was also trained on the translated version of this dataset (via Google Translate API) for English classification. ## Eval results ### Hungarian Results: | Class | Precision | Recall | F-Score | | ----- | --------- | ------ | ------- | | **Comprehensible / Label_0** | **0.82** | **0.74** | **0.78** | | **Not comprehensible / Label_1** | **0.77** | **0.85** | **0.81** | | **accuracy** | | | **0.80** | | **macro avg** | **0.80** | **0.79** | **0.79** | | **weighted avg** | **0.80** | **0.80** | **0.79** | ### English Results: | Class | Precision | Recall | F-Score | | ----- | --------- | ------ | ------- | | **Comprehensible / Label_0** | **0.68** | **0.60** | **0.64** | | **Not comprehensible / Label_1** | **0.66** | **0.73** | **0.69** | | **accuracy** | | | **0.67** | | **macro avg** | **0.67** | **0.67** | **0.67** | | **weighted avg** | **0.67** | **0.67** | **0.67** | ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain") model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain") ``` ### BibTeX entry and citation info If you use the model, please cite the following dissertation (to be submitted for workshop discussion): Bibtex: ```bibtex @PhDThesis{ Uveges:2024, author = {{"U}veges, Istv{\'a}n}, title = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.}, year = {2024}, school = {Szegedi Tudom{\'a}nyegyetem} } ```