Fixed README.md and uploaded the conversion script.
Browse files- README.md +2 -7
- convert.py +278 -0
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
- moe
|
11 |
---
|
12 |
# Model Card for Mixtral-8x22B
|
13 |
-
Converted to HuggingFace Transformers format using the script [here]().
|
14 |
|
15 |
The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.
|
16 |
## Run the model
|
@@ -28,13 +28,9 @@ inputs = tokenizer(text, return_tensors="pt")
|
|
28 |
outputs = model.generate(**inputs, max_new_tokens=20)
|
29 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
30 |
```
|
31 |
-
|
32 |
By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
|
33 |
-
|
34 |
### In half-precision
|
35 |
-
|
36 |
Note `float16` precision only works on GPU devices
|
37 |
-
|
38 |
<details>
|
39 |
<summary> Click to expand </summary>
|
40 |
|
@@ -56,7 +52,6 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
56 |
</details>
|
57 |
|
58 |
### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
|
59 |
-
|
60 |
<details>
|
61 |
<summary> Click to expand </summary>
|
62 |
|
@@ -78,7 +73,6 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
78 |
</details>
|
79 |
|
80 |
### Load the model with Flash Attention 2
|
81 |
-
|
82 |
<details>
|
83 |
<summary> Click to expand </summary>
|
84 |
|
@@ -98,6 +92,7 @@ outputs = model.generate(**inputs, max_new_tokens=20)
|
|
98 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
99 |
```
|
100 |
</details>
|
|
|
101 |
## Notice
|
102 |
Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.
|
103 |
# The Mistral AI Team
|
|
|
10 |
- moe
|
11 |
---
|
12 |
# Model Card for Mixtral-8x22B
|
13 |
+
Converted to HuggingFace Transformers format using the script [here](https://huggingface.co/v2ray/Mixtral-8x22B-v0.1/blob/main/convert.py).
|
14 |
|
15 |
The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.
|
16 |
## Run the model
|
|
|
28 |
outputs = model.generate(**inputs, max_new_tokens=20)
|
29 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
30 |
```
|
|
|
31 |
By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
|
|
|
32 |
### In half-precision
|
|
|
33 |
Note `float16` precision only works on GPU devices
|
|
|
34 |
<details>
|
35 |
<summary> Click to expand </summary>
|
36 |
|
|
|
52 |
</details>
|
53 |
|
54 |
### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
|
|
|
55 |
<details>
|
56 |
<summary> Click to expand </summary>
|
57 |
|
|
|
73 |
</details>
|
74 |
|
75 |
### Load the model with Flash Attention 2
|
|
|
76 |
<details>
|
77 |
<summary> Click to expand </summary>
|
78 |
|
|
|
92 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
93 |
```
|
94 |
</details>
|
95 |
+
|
96 |
## Notice
|
97 |
Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.
|
98 |
# The Mistral AI Team
|
convert.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from safetensors.torch import load_file
|
20 |
+
|
21 |
+
from transformers import (
|
22 |
+
MixtralConfig,
|
23 |
+
MixtralForCausalLM,
|
24 |
+
)
|
25 |
+
|
26 |
+
"""
|
27 |
+
Sample usage:
|
28 |
+
|
29 |
+
```
|
30 |
+
python src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py \
|
31 |
+
--input_dir /path/to/downloaded/mixtral/weights --model_size 7B --output_dir /output/path
|
32 |
+
```
|
33 |
+
|
34 |
+
Thereafter, models can be loaded via:
|
35 |
+
|
36 |
+
```py
|
37 |
+
from transformers import MixtralForCausalLM
|
38 |
+
|
39 |
+
model = MixtralForCausalLM.from_pretrained("/output/path")
|
40 |
+
```
|
41 |
+
|
42 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
43 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
44 |
+
"""
|
45 |
+
|
46 |
+
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
|
47 |
+
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
|
48 |
+
|
49 |
+
def read_json(path):
|
50 |
+
with open(path, "r") as f:
|
51 |
+
return json.load(f)
|
52 |
+
|
53 |
+
def write_json(text, path):
|
54 |
+
with open(path, "w") as f:
|
55 |
+
json.dump(text, f)
|
56 |
+
|
57 |
+
def write_model(model_path, input_base_path, model_size, safe_serialization=True):
|
58 |
+
os.makedirs(model_path, exist_ok=True)
|
59 |
+
|
60 |
+
params = read_json(os.path.join(input_base_path, "params.json"))
|
61 |
+
num_shards = 1
|
62 |
+
|
63 |
+
# For some reason this is a string in the params.json
|
64 |
+
sliding_window = int(params["sliding_window"]) if "sliding_window" in params else None
|
65 |
+
base = params.get("rope_theta", 10000.0)
|
66 |
+
vocab_size = params["vocab_size"]
|
67 |
+
|
68 |
+
if model_size == "7B":
|
69 |
+
dim = params["hidden_size"]
|
70 |
+
max_position_embeddings = 4096 * 8
|
71 |
+
num_local_experts = params["num_local_experts"]
|
72 |
+
ffn_dim = params["intermediate_size"]
|
73 |
+
n_layers = params["num_hidden_layers"]
|
74 |
+
n_heads = params["num_attention_heads"]
|
75 |
+
n_heads_per_shard = n_heads // num_shards
|
76 |
+
dims_per_head = dim // n_heads
|
77 |
+
if "num_key_value_heads" in params:
|
78 |
+
num_key_value_heads = params["num_key_value_heads"] # for GQA / MQA
|
79 |
+
num_local_key_value_heads = num_key_value_heads // num_shards
|
80 |
+
key_value_dim = dims_per_head * num_local_key_value_heads
|
81 |
+
else: # compatibility with other checkpoints
|
82 |
+
num_key_value_heads = n_heads
|
83 |
+
num_local_key_value_heads = n_heads_per_shard
|
84 |
+
key_value_dim = dim
|
85 |
+
rms_norm_eps = params["rms_norm_eps"]
|
86 |
+
elif model_size == "22B":
|
87 |
+
dim = params["dim"]
|
88 |
+
max_position_embeddings = params["max_seq_len"]
|
89 |
+
num_local_experts = params["moe"]["num_experts"]
|
90 |
+
ffn_dim = params["hidden_dim"]
|
91 |
+
n_layers = params["n_layers"]
|
92 |
+
n_heads = params["n_heads"]
|
93 |
+
n_heads_per_shard = n_heads // num_shards
|
94 |
+
dims_per_head = dim // n_heads
|
95 |
+
if "n_kv_heads" in params:
|
96 |
+
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
|
97 |
+
num_local_key_value_heads = num_key_value_heads // num_shards
|
98 |
+
key_value_dim = dims_per_head * num_local_key_value_heads
|
99 |
+
else: # compatibility with other checkpoints
|
100 |
+
num_key_value_heads = n_heads
|
101 |
+
num_local_key_value_heads = n_heads_per_shard
|
102 |
+
key_value_dim = dim
|
103 |
+
rms_norm_eps = params["norm_eps"]
|
104 |
+
else:
|
105 |
+
raise Exception("Illegal model size:", model_size)
|
106 |
+
|
107 |
+
# permute for sliced rotary
|
108 |
+
def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
|
109 |
+
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
|
110 |
+
|
111 |
+
print(f"Fetching all parameters from the checkpoint at \"{input_base_path}\"...")
|
112 |
+
# Load weights
|
113 |
+
if model_size == "7B":
|
114 |
+
loaded = [
|
115 |
+
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pt"), map_location="cpu") for i in range(8)
|
116 |
+
]
|
117 |
+
merged_state_dict = {}
|
118 |
+
for state_dict in loaded:
|
119 |
+
merged_state_dict.update(state_dict)
|
120 |
+
elif model_size == "22B":
|
121 |
+
merged_state_dict = load_file(os.path.join(input_base_path, "consolidated.safetensors"))
|
122 |
+
print("Parameters load finished.")
|
123 |
+
|
124 |
+
state_dict = {}
|
125 |
+
for layer_i in range(n_layers):
|
126 |
+
print(f"At layer {layer_i}...")
|
127 |
+
# Sharded
|
128 |
+
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
|
129 |
+
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
|
130 |
+
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
|
131 |
+
|
132 |
+
state_dict.update(
|
133 |
+
{
|
134 |
+
f"model.layers.{layer_i}.input_layernorm.weight": merged_state_dict[
|
135 |
+
f"layers.{layer_i}.attention_norm.weight"
|
136 |
+
].clone(),
|
137 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": merged_state_dict[
|
138 |
+
f"layers.{layer_i}.ffn_norm.weight"
|
139 |
+
].clone(),
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
+
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
144 |
+
merged_state_dict[f"layers.{layer_i}.attention.wq.weight"]
|
145 |
+
.view(n_heads_per_shard, dims_per_head, dim)
|
146 |
+
.reshape(dim, dim)
|
147 |
+
)
|
148 |
+
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
149 |
+
merged_state_dict[f"layers.{layer_i}.attention.wk.weight"]
|
150 |
+
.view(num_local_key_value_heads, dims_per_head, dim)
|
151 |
+
.reshape(key_value_dim, dim),
|
152 |
+
num_key_value_heads,
|
153 |
+
key_value_dim,
|
154 |
+
dim,
|
155 |
+
)
|
156 |
+
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = (
|
157 |
+
merged_state_dict[f"layers.{layer_i}.attention.wv.weight"]
|
158 |
+
.view(num_local_key_value_heads, dims_per_head, dim)
|
159 |
+
.reshape(key_value_dim, dim)
|
160 |
+
)
|
161 |
+
|
162 |
+
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = merged_state_dict[
|
163 |
+
f"layers.{layer_i}.attention.wo.weight"
|
164 |
+
]
|
165 |
+
|
166 |
+
if model_size == "7B":
|
167 |
+
w1 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w1"]
|
168 |
+
w2 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w2"]
|
169 |
+
w3 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w3"]
|
170 |
+
|
171 |
+
experts_w1 = [
|
172 |
+
w1[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
|
173 |
+
for expert_idx in range(num_local_experts)
|
174 |
+
]
|
175 |
+
|
176 |
+
for idx, expert_block in enumerate(experts_w1):
|
177 |
+
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w1"
|
178 |
+
state_dict[expert_key + ".weight"] = expert_block.clone()
|
179 |
+
|
180 |
+
experts_w2 = [
|
181 |
+
w2[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
|
182 |
+
for expert_idx in range(num_local_experts)
|
183 |
+
]
|
184 |
+
|
185 |
+
for idx, expert_block in enumerate(experts_w2):
|
186 |
+
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w2"
|
187 |
+
state_dict[expert_key + ".weight"] = expert_block.T.clone().contiguous()
|
188 |
+
|
189 |
+
experts_w3 = [
|
190 |
+
w3[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
|
191 |
+
for expert_idx in range(num_local_experts)
|
192 |
+
]
|
193 |
+
|
194 |
+
for idx, expert_block in enumerate(experts_w3):
|
195 |
+
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w3"
|
196 |
+
state_dict[expert_key + ".weight"] = expert_block.clone()
|
197 |
+
|
198 |
+
state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
|
199 |
+
f"layers.{layer_i}.block_sparse_moe.gate.weight"
|
200 |
+
]
|
201 |
+
elif model_size == "22B":
|
202 |
+
for expert_i in range(num_local_experts):
|
203 |
+
w1 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w1.weight"]
|
204 |
+
w2 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w2.weight"]
|
205 |
+
w3 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w3.weight"]
|
206 |
+
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w1.weight"] = w1.contiguous().clone()
|
207 |
+
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w2.weight"] = w2.contiguous().clone()
|
208 |
+
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w3.weight"] = w3.contiguous().clone()
|
209 |
+
state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
|
210 |
+
f"layers.{layer_i}.feed_forward.gate.weight"
|
211 |
+
]
|
212 |
+
|
213 |
+
state_dict.update(
|
214 |
+
{
|
215 |
+
"model.norm.weight": merged_state_dict["norm.weight"],
|
216 |
+
"model.embed_tokens.weight": merged_state_dict["tok_embeddings.weight"],
|
217 |
+
"lm_head.weight": merged_state_dict["output.weight"],
|
218 |
+
}
|
219 |
+
)
|
220 |
+
|
221 |
+
config_additional_kwargs = {}
|
222 |
+
if model_size == "22B":
|
223 |
+
config_additional_kwargs["num_experts_per_tok"] = params["moe"]["num_experts_per_tok"]
|
224 |
+
config = MixtralConfig(
|
225 |
+
hidden_size=dim,
|
226 |
+
intermediate_size=ffn_dim,
|
227 |
+
num_attention_heads=n_heads,
|
228 |
+
num_hidden_layers=n_layers,
|
229 |
+
rms_norm_eps=rms_norm_eps,
|
230 |
+
num_key_value_heads=num_key_value_heads,
|
231 |
+
vocab_size=vocab_size,
|
232 |
+
rope_theta=base,
|
233 |
+
max_position_embeddings=max_position_embeddings,
|
234 |
+
sliding_window=sliding_window,
|
235 |
+
num_local_experts=num_local_experts,
|
236 |
+
**config_additional_kwargs
|
237 |
+
)
|
238 |
+
|
239 |
+
print("Loading the checkpoint in a Mixtral model.")
|
240 |
+
with torch.device("meta"):
|
241 |
+
model = MixtralForCausalLM(config)
|
242 |
+
# Avoid saving this as part of the config.
|
243 |
+
del model.config._name_or_path
|
244 |
+
model.config.torch_dtype = torch.bfloat16
|
245 |
+
print("Saving in the Transformers format.")
|
246 |
+
|
247 |
+
model.load_state_dict(state_dict, strict=True, assign=True)
|
248 |
+
|
249 |
+
for n, p in model.named_parameters():
|
250 |
+
assert p.device.type != "meta", f"{n} has not been loaded!"
|
251 |
+
|
252 |
+
model.save_pretrained(model_path, safe_serialization=safe_serialization)
|
253 |
+
|
254 |
+
def main():
|
255 |
+
parser = argparse.ArgumentParser()
|
256 |
+
parser.add_argument(
|
257 |
+
"--input-dir",
|
258 |
+
help="Location of Mixtral weights, which contains tokenizer.model and model folders",
|
259 |
+
required=True,
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--model-size",
|
263 |
+
choices=["7B", "22B"],
|
264 |
+
help="'f' models correspond to the finetuned versions, and are specific to the Mixtral official release. For more details on Mixtral, checkout the original repo: https://huggingface.co/mistral-ai",
|
265 |
+
default="7B",
|
266 |
+
)
|
267 |
+
parser.add_argument("--output-dir", help="Location to write HF model", required=True)
|
268 |
+
parser.add_argument("--safe-serialization", type=bool, default=True, help="Whether or not to save using `safetensors`.")
|
269 |
+
args = parser.parse_args()
|
270 |
+
write_model(
|
271 |
+
model_path=args.output_dir,
|
272 |
+
input_base_path=args.input_dir,
|
273 |
+
model_size=args.model_size,
|
274 |
+
safe_serialization=args.safe_serialization,
|
275 |
+
)
|
276 |
+
|
277 |
+
if __name__ == "__main__":
|
278 |
+
main()
|