vabatista commited on
Commit
2f7212c
1 Parent(s): 3acce25

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: afl-3.0
3
+ language:
4
+ - pt
5
+ pipeline_tag: text2text-generation
6
+ ---
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+ This model is intended to be used generating questions and answers from brazilian portuguese text passages,
11
+ so you can finetune another BERT model into your generated triples (context-question-answer) for extractive question answering without supervision or labeled data.
12
+
13
+ It was trained using [unicamp-dl/ptt5-base-t5-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-base-t5-portuguese-vocab) base model and [Squad 1.1 portuguese version](https://huggingface.co/datasets/ArthurBaia/squad_v1_pt_br) dataset to generante question and answers from text passages.
14
+
15
+ ### Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+
20
+
21
+ - **Developed by:** Vitor Alcantara Batista (vabatista@gmail.com)
22
+ - **Model type:** T5 base
23
+ - **Language(s) (NLP):** Brazilian Portuguese
24
+ - **License:** [Academic Free License v. 3.0](https://opensource.org/license/afl-3-0-php/)
25
+ - **Finetuned from model :** unicamp-dl/ptt5-base-t5-vocab
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** This model used code from this github repo [https://github.com/patil-suraj/question_generation/](https://github.com/patil-suraj/question_generation/)
32
+
33
+ ## Usage
34
+
35
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
36
+
37
+ How to use it (after cloning the github repo above):
38
+
39
+ ```
40
+ from pipelines import pipeline
41
+ nlp = pipeline("multitask-qa-qg", model='vabatista/question-generation-t5-pt-br', tokenizer='vabatista/question-generation-t5-pt-br')
42
+
43
+ text = """ PUT YOUR TEXT PASSAGE HERE """
44
+ nlp(text)
45
+
46
+ ```
47
+ Sample usage/results:
48
+
49
+ ![sample_results.png](sample_results.png)
50
+
51
+ ## Training Details
52
+
53
+ TODO
54
+
55
+ ## Model Card Authors
56
+
57
+ Vitor Alcantara Batista
58
+
59
+ ## Model Card Contact
60
+
61
+ vabatista@gmail.com