vahidthegreat commited on
Commit
c760c4d
1 Parent(s): 937277a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -44,14 +44,14 @@ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
44
 
45
  # Load and apply LoRA weights
46
  lora_model = PeftModel.from_pretrained(base_model, "vahidthegreat/StanceAware-SBERT")
47
-
48
 
49
 
50
 
51
  ## Using the Model with the Siamese Network Class
52
 
53
  The following custom `SiameseNetworkMPNet` class leverages the model for stance detection tasks. It pools embeddings and normalizes them for similarity calculations. This is for the sake of replicability of our exact results. But the model would work without this as well.
54
-
55
  import torch
56
  import torch.nn as nn
57
  import torch.nn.functional as F
@@ -78,13 +78,13 @@ class SiameseNetworkMPNet(nn.Module):
78
  embeddings = F.normalize(embeddings, p=2, dim=1)
79
 
80
  return embeddings
81
-
82
 
83
 
84
  ## Example Usage for Two-Sentence Similarity
85
  The following example shows how to use the Siamese network with two input sentences, calculating cosine similarity to compare stances.
86
 
87
-
88
  from sklearn.metrics.pairwise import cosine_similarity
89
 
90
  def two_sentence_similarity(model, tokenizer, text1, text2):
@@ -108,7 +108,7 @@ text2 = "I hate pineapple on pizza"
108
  # Instantiate model and tokenizer
109
  stance_model = SiameseNetworkMPNet(model_name=base_model_name, tokenizer=tokenizer)
110
  two_sentence_similarity(stance_model, tokenizer, text1, text2)
111
-
112
 
113
 
114
 
@@ -139,4 +139,5 @@ If you use this model in your research, please cite our paper:
139
  month={November 14},
140
  url={https://hdl.handle.net/20.500.12761/1851},
141
  note={Available online at https://hdl.handle.net/20.500.12761/1851}
142
- }
 
 
44
 
45
  # Load and apply LoRA weights
46
  lora_model = PeftModel.from_pretrained(base_model, "vahidthegreat/StanceAware-SBERT")
47
+ ```
48
 
49
 
50
 
51
  ## Using the Model with the Siamese Network Class
52
 
53
  The following custom `SiameseNetworkMPNet` class leverages the model for stance detection tasks. It pools embeddings and normalizes them for similarity calculations. This is for the sake of replicability of our exact results. But the model would work without this as well.
54
+ ```
55
  import torch
56
  import torch.nn as nn
57
  import torch.nn.functional as F
 
78
  embeddings = F.normalize(embeddings, p=2, dim=1)
79
 
80
  return embeddings
81
+ ```
82
 
83
 
84
  ## Example Usage for Two-Sentence Similarity
85
  The following example shows how to use the Siamese network with two input sentences, calculating cosine similarity to compare stances.
86
 
87
+ ```
88
  from sklearn.metrics.pairwise import cosine_similarity
89
 
90
  def two_sentence_similarity(model, tokenizer, text1, text2):
 
108
  # Instantiate model and tokenizer
109
  stance_model = SiameseNetworkMPNet(model_name=base_model_name, tokenizer=tokenizer)
110
  two_sentence_similarity(stance_model, tokenizer, text1, text2)
111
+ ```
112
 
113
 
114
 
 
139
  month={November 14},
140
  url={https://hdl.handle.net/20.500.12761/1851},
141
  note={Available online at https://hdl.handle.net/20.500.12761/1851}
142
+ }
143
+ ```