--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3582458307597282 --- # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 1.0645 - Wer Ortho: 0.3623 - Wer: 0.3582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:| | 0.0003 | 1.7857 | 50 | 0.9458 | 0.3862 | 0.3792 | | 0.0018 | 3.5714 | 100 | 0.9438 | 0.3578 | 0.3490 | | 0.0021 | 5.3571 | 150 | 0.9330 | 0.3894 | 0.3811 | | 0.0008 | 7.1429 | 200 | 0.9398 | 0.3972 | 0.3928 | | 0.0003 | 8.9286 | 250 | 0.9701 | 0.3985 | 0.3953 | | 0.0006 | 10.7143 | 300 | 0.9799 | 0.3965 | 0.3928 | | 0.0002 | 12.5 | 350 | 0.9913 | 0.3669 | 0.3644 | | 0.0001 | 14.2857 | 400 | 0.9941 | 0.3540 | 0.3490 | | 0.0001 | 16.0714 | 450 | 1.0054 | 0.3585 | 0.3545 | | 0.0001 | 17.8571 | 500 | 1.0149 | 0.3585 | 0.3545 | | 0.0001 | 19.6429 | 550 | 1.0218 | 0.3527 | 0.3490 | | 0.0001 | 21.4286 | 600 | 1.0279 | 0.3598 | 0.3564 | | 0.0 | 23.2143 | 650 | 1.0336 | 0.3585 | 0.3552 | | 0.0 | 25.0 | 700 | 1.0389 | 0.3598 | 0.3564 | | 0.0 | 26.7857 | 750 | 1.0434 | 0.3611 | 0.3570 | | 0.0 | 28.5714 | 800 | 1.0486 | 0.3636 | 0.3595 | | 0.0 | 30.3571 | 850 | 1.0529 | 0.3636 | 0.3595 | | 0.0 | 32.1429 | 900 | 1.0571 | 0.3623 | 0.3582 | | 0.0 | 33.9286 | 950 | 1.0607 | 0.3623 | 0.3582 | | 0.0 | 35.7143 | 1000 | 1.0645 | 0.3623 | 0.3582 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1