update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,36 +66,36 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.0001 | 24.0 | 744 | 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.0008 | 29.0 | 899 | 0.
|
98 |
-
| 0.
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9202733485193622
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.3605
|
35 |
+
- Accuracy: 0.9203
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.5913 | 1.0 | 31 | 0.7046 | 0.7175 |
|
70 |
+
| 0.1409 | 2.0 | 62 | 0.8423 | 0.6788 |
|
71 |
+
| 0.0825 | 3.0 | 93 | 0.6224 | 0.7654 |
|
72 |
+
| 0.0509 | 4.0 | 124 | 0.4379 | 0.8360 |
|
73 |
+
| 0.0439 | 5.0 | 155 | 0.1706 | 0.9317 |
|
74 |
+
| 0.0107 | 6.0 | 186 | 0.1914 | 0.9362 |
|
75 |
+
| 0.0134 | 7.0 | 217 | 0.2491 | 0.9089 |
|
76 |
+
| 0.0338 | 8.0 | 248 | 0.2119 | 0.9362 |
|
77 |
+
| 0.0306 | 9.0 | 279 | 0.4502 | 0.8610 |
|
78 |
+
| 0.0054 | 10.0 | 310 | 0.4990 | 0.8747 |
|
79 |
+
| 0.0033 | 11.0 | 341 | 0.2746 | 0.9112 |
|
80 |
+
| 0.0021 | 12.0 | 372 | 0.2501 | 0.9317 |
|
81 |
+
| 0.0068 | 13.0 | 403 | 0.1883 | 0.9522 |
|
82 |
+
| 0.0038 | 14.0 | 434 | 0.3672 | 0.9134 |
|
83 |
+
| 0.0006 | 15.0 | 465 | 0.2275 | 0.9408 |
|
84 |
+
| 0.0011 | 16.0 | 496 | 0.3349 | 0.9134 |
|
85 |
+
| 0.0017 | 17.0 | 527 | 0.3329 | 0.9157 |
|
86 |
+
| 0.0007 | 18.0 | 558 | 0.2508 | 0.9317 |
|
87 |
+
| 0.0023 | 19.0 | 589 | 0.2338 | 0.9385 |
|
88 |
+
| 0.0003 | 20.0 | 620 | 0.3193 | 0.9226 |
|
89 |
+
| 0.002 | 21.0 | 651 | 0.4604 | 0.9043 |
|
90 |
+
| 0.0023 | 22.0 | 682 | 0.3338 | 0.9203 |
|
91 |
+
| 0.005 | 23.0 | 713 | 0.2925 | 0.9271 |
|
92 |
+
| 0.0001 | 24.0 | 744 | 0.2022 | 0.9522 |
|
93 |
+
| 0.0002 | 25.0 | 775 | 0.2699 | 0.9339 |
|
94 |
+
| 0.0007 | 26.0 | 806 | 0.2603 | 0.9385 |
|
95 |
+
| 0.0005 | 27.0 | 837 | 0.4120 | 0.9134 |
|
96 |
+
| 0.0003 | 28.0 | 868 | 0.3550 | 0.9203 |
|
97 |
+
| 0.0008 | 29.0 | 899 | 0.3657 | 0.9203 |
|
98 |
+
| 0.0 | 30.0 | 930 | 0.3605 | 0.9203 |
|
99 |
|
100 |
|
101 |
### Framework versions
|