update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swin-tiny-patch4-window7-224-finetuned-agrivision
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9230769230769231
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# swin-tiny-patch4-window7-224-finetuned-agrivision
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2078
|
35 |
+
- Accuracy: 0.9231
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 1.0 | 1 | 1.0943 | 0.3077 |
|
70 |
+
| No log | 2.0 | 2 | 1.0435 | 0.3846 |
|
71 |
+
| No log | 3.0 | 3 | 0.9499 | 0.6923 |
|
72 |
+
| No log | 4.0 | 4 | 0.8199 | 0.7692 |
|
73 |
+
| No log | 5.0 | 5 | 0.7033 | 0.7692 |
|
74 |
+
| No log | 6.0 | 6 | 0.6062 | 0.7692 |
|
75 |
+
| No log | 7.0 | 7 | 0.5142 | 0.7692 |
|
76 |
+
| No log | 8.0 | 8 | 0.4379 | 0.8462 |
|
77 |
+
| No log | 9.0 | 9 | 0.3900 | 0.8462 |
|
78 |
+
| 0.6751 | 10.0 | 10 | 0.3688 | 0.8462 |
|
79 |
+
| 0.6751 | 11.0 | 11 | 0.3510 | 0.8462 |
|
80 |
+
| 0.6751 | 12.0 | 12 | 0.3228 | 0.9231 |
|
81 |
+
| 0.6751 | 13.0 | 13 | 0.2788 | 0.9231 |
|
82 |
+
| 0.6751 | 14.0 | 14 | 0.2326 | 1.0 |
|
83 |
+
| 0.6751 | 15.0 | 15 | 0.2043 | 1.0 |
|
84 |
+
| 0.6751 | 16.0 | 16 | 0.1934 | 1.0 |
|
85 |
+
| 0.6751 | 17.0 | 17 | 0.1933 | 1.0 |
|
86 |
+
| 0.6751 | 18.0 | 18 | 0.1954 | 1.0 |
|
87 |
+
| 0.6751 | 19.0 | 19 | 0.2065 | 1.0 |
|
88 |
+
| 0.0563 | 20.0 | 20 | 0.2209 | 0.9231 |
|
89 |
+
| 0.0563 | 21.0 | 21 | 0.2424 | 0.8462 |
|
90 |
+
| 0.0563 | 22.0 | 22 | 0.2537 | 0.8462 |
|
91 |
+
| 0.0563 | 23.0 | 23 | 0.2508 | 0.8462 |
|
92 |
+
| 0.0563 | 24.0 | 24 | 0.2425 | 0.8462 |
|
93 |
+
| 0.0563 | 25.0 | 25 | 0.2381 | 0.8462 |
|
94 |
+
| 0.0563 | 26.0 | 26 | 0.2351 | 0.8462 |
|
95 |
+
| 0.0563 | 27.0 | 27 | 0.2266 | 0.9231 |
|
96 |
+
| 0.0563 | 28.0 | 28 | 0.2178 | 0.9231 |
|
97 |
+
| 0.0563 | 29.0 | 29 | 0.2111 | 0.9231 |
|
98 |
+
| 0.007 | 30.0 | 30 | 0.2078 | 0.9231 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.21.1
|
104 |
+
- Pytorch 1.12.1
|
105 |
+
- Datasets 2.4.0
|
106 |
+
- Tokenizers 0.12.1
|