|
import streamlit as st |
|
from PIL import Image |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import itertools |
|
from nltk.corpus import stopwords |
|
import nltk |
|
import easyocr |
|
import numpy as np |
|
nltk.download('stopwords') |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
reader = easyocr.Reader(['en']) |
|
|
|
|
|
st.set_page_config(layout='wide', page_title='Image Hashtag Recommender') |
|
|
|
|
|
|
|
def generate_hashtags(image_file): |
|
|
|
image = Image.open(image_file).convert('RGB') |
|
|
|
|
|
pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values |
|
output_ids = model.generate(pixel_values) |
|
|
|
|
|
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
caption_words = [word.lower() for word in output_text.split() if not word.startswith("#")] |
|
|
|
|
|
stop_words = set(stopwords.words('english')) |
|
caption_words = [word for word in caption_words if word not in stop_words] |
|
|
|
|
|
text = reader.readtext(np.array(image)) |
|
detected_text = " ".join([item[1] for item in text]) |
|
|
|
|
|
all_words = caption_words + detected_text.split() |
|
|
|
|
|
hashtags = [] |
|
for n in range(1, 4): |
|
word_combinations = list(itertools.combinations(all_words, n)) |
|
for combination in word_combinations: |
|
hashtag = "#" + "".join(combination) |
|
hashtags.append(hashtag) |
|
|
|
|
|
top_hashtags = [tag for tag in sorted(set(hashtags), key=hashtags.count, reverse=True) if tag != "#"] |
|
return top_hashtags[:10] |
|
|
|
|
|
|
|
st.title("Image Hashtag Recommender") |
|
|
|
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
|
|
|
|
if image_file is not None: |
|
try: |
|
hashtags = generate_hashtags(image_file) |
|
if len(hashtags) > 0: |
|
st.write("Top 10 hashtags for this image:") |
|
for tag in hashtags: |
|
st.write(tag) |
|
else: |
|
st.write("No hashtags found for this image.") |
|
except Exception as e: |
|
st.write(f"Error: {e}") |
|
|