File size: 2,135 Bytes
d97c895 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swinv2-base-patch4-window8-256-isic217
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-base-patch4-window8-256-isic217
This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1588
- Accuracy: 0.65
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.1681 | 0.9888 | 22 | 2.0018 | 0.25 |
| 1.9254 | 1.9775 | 44 | 1.7653 | 0.35 |
| 1.6706 | 2.9663 | 66 | 1.6649 | 0.6 |
| 1.2834 | 4.0 | 89 | 1.5579 | 0.5 |
| 1.2039 | 4.9888 | 111 | 1.4087 | 0.55 |
| 0.9395 | 5.9775 | 133 | 1.3115 | 0.5 |
| 0.7532 | 6.9663 | 155 | 1.3599 | 0.6 |
| 0.6573 | 8.0 | 178 | 1.1588 | 0.65 |
| 0.6663 | 8.9888 | 200 | 1.2074 | 0.6 |
| 0.4686 | 9.8876 | 220 | 1.2285 | 0.6 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|