End of training
Browse files- README.md +15 -27
- model.safetensors +1 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss:
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,42 +53,30 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
60 |
-
- gradient_accumulation_steps: 2
|
61 |
-
- total_train_batch_size: 20
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs:
|
66 |
- mixed_precision_training: Native AMP
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
-
|
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
|
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.1392 | 11.0 | 385 | 0.7565 | 0.7692 |
|
83 |
-
| 0.0886 | 12.0 | 420 | 0.7082 | 0.8205 |
|
84 |
-
| 0.0583 | 13.0 | 455 | 0.7529 | 0.8205 |
|
85 |
-
| 0.0383 | 14.0 | 490 | 0.7678 | 0.7949 |
|
86 |
-
| 0.0345 | 15.0 | 525 | 0.7480 | 0.8333 |
|
87 |
-
| 0.0269 | 16.0 | 560 | 0.7542 | 0.8333 |
|
88 |
-
| 0.0246 | 17.0 | 595 | 0.7550 | 0.8205 |
|
89 |
-
| 0.0233 | 18.0 | 630 | 0.7725 | 0.8333 |
|
90 |
-
| 0.0225 | 19.0 | 665 | 0.7701 | 0.8333 |
|
91 |
-
| 0.0225 | 20.0 | 700 | 0.7729 | 0.8333 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.7692307692307693
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 1.2256
|
37 |
+
- Accuracy: 0.7692
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 9e-05
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
|
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 18
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.9893 | 1.0 | 70 | 1.9671 | 0.4615 |
|
71 |
+
| 1.1923 | 2.0 | 140 | 1.3634 | 0.5256 |
|
72 |
+
| 1.1937 | 3.0 | 210 | 1.0865 | 0.6154 |
|
73 |
+
| 0.5684 | 4.0 | 280 | 0.9352 | 0.6795 |
|
74 |
+
| 0.4571 | 5.0 | 350 | 0.7889 | 0.7564 |
|
75 |
+
| 0.1854 | 6.0 | 420 | 0.8209 | 0.7308 |
|
76 |
+
| 0.0688 | 7.0 | 490 | 0.9835 | 0.7692 |
|
77 |
+
| 0.087 | 8.0 | 560 | 1.1710 | 0.7179 |
|
78 |
+
| 0.0109 | 9.0 | 630 | 1.0900 | 0.7692 |
|
79 |
+
| 0.0049 | 10.0 | 700 | 1.2256 | 0.7692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a80c1384df2510a8c156bdf93bdb9c7b6a84128c3389d6464ae142e0620136d
|
3 |
size 94771728
|