End of training
Browse files- README.md +21 -15
- model.safetensors +1 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,10 +53,12 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
|
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -67,17 +69,21 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 2.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
|
|
74 |
-
|
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.717948717948718
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.8872
|
37 |
+
- Accuracy: 0.7179
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 4e-05
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 20
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
+
| 2.2117 | 1.0 | 35 | 2.1969 | 0.1923 |
|
73 |
+
| 1.9698 | 2.0 | 70 | 1.9327 | 0.3846 |
|
74 |
+
| 1.6629 | 3.0 | 105 | 1.5580 | 0.5 |
|
75 |
+
| 1.2324 | 4.0 | 140 | 1.3368 | 0.6154 |
|
76 |
+
| 1.0466 | 5.0 | 175 | 1.1638 | 0.6538 |
|
77 |
+
| 0.8969 | 6.0 | 210 | 1.0416 | 0.6923 |
|
78 |
+
| 0.7626 | 7.0 | 245 | 0.9258 | 0.7436 |
|
79 |
+
| 0.6015 | 8.0 | 280 | 1.0475 | 0.6667 |
|
80 |
+
| 0.5003 | 9.0 | 315 | 0.8890 | 0.7308 |
|
81 |
+
| 0.3956 | 10.0 | 350 | 0.8396 | 0.7564 |
|
82 |
+
| 0.3228 | 11.0 | 385 | 0.8072 | 0.6795 |
|
83 |
+
| 0.2558 | 12.0 | 420 | 0.7788 | 0.7308 |
|
84 |
+
| 0.1901 | 13.0 | 455 | 0.8432 | 0.7308 |
|
85 |
+
| 0.1251 | 14.0 | 490 | 0.8287 | 0.7051 |
|
86 |
+
| 0.1185 | 15.0 | 525 | 0.8872 | 0.7179 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1074c4429b765d1aa21f7ded98b79a2522f8e72913feaf07cc8ab66642353601
|
3 |
size 94771728
|