End of training
Browse files- README.md +18 -22
- model.safetensors +1 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,12 +53,12 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
-
- train_batch_size:
|
58 |
-
- eval_batch_size:
|
59 |
- seed: 42
|
60 |
- gradient_accumulation_steps: 2
|
61 |
-
- total_train_batch_size:
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -69,21 +69,17 @@ The following hyperparameters were used during training:
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
-
| 2.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
|
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.2558 | 12.0 | 420 | 0.7788 | 0.7308 |
|
84 |
-
| 0.1901 | 13.0 | 455 | 0.8432 | 0.7308 |
|
85 |
-
| 0.1251 | 14.0 | 490 | 0.8287 | 0.7051 |
|
86 |
-
| 0.1185 | 15.0 | 525 | 0.8872 | 0.7179 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.7435897435897436
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.8173
|
37 |
+
- Accuracy: 0.7436
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 8
|
58 |
+
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 16
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
+
| 2.1874 | 1.0 | 44 | 2.1429 | 0.3974 |
|
73 |
+
| 1.8257 | 2.0 | 88 | 1.7390 | 0.4872 |
|
74 |
+
| 1.4881 | 3.0 | 132 | 1.3711 | 0.6026 |
|
75 |
+
| 1.0373 | 4.0 | 176 | 1.1632 | 0.6667 |
|
76 |
+
| 0.7621 | 5.0 | 220 | 1.0026 | 0.7308 |
|
77 |
+
| 0.6114 | 6.0 | 264 | 0.8857 | 0.7436 |
|
78 |
+
| 0.5642 | 7.0 | 308 | 0.8796 | 0.7179 |
|
79 |
+
| 0.3386 | 8.0 | 352 | 1.0714 | 0.6923 |
|
80 |
+
| 0.3364 | 9.0 | 396 | 0.8363 | 0.7308 |
|
81 |
+
| 0.1678 | 10.0 | 440 | 0.7834 | 0.7436 |
|
82 |
+
| 0.1154 | 11.0 | 484 | 0.8173 | 0.7436 |
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44ac79fc98a21d10107f6fbdc7c27ce428c1b8689f3eb61ba15765937174964a
|
3 |
size 94771728
|