vapari commited on
Commit
c77e838
·
verified ·
1 Parent(s): 382ec49

End of training

Browse files
Files changed (2) hide show
  1. README.md +16 -15
  2. model.safetensors +1 -1
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.7692307692307693
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 1.2256
37
- - Accuracy: 0.7692
38
 
39
  ## Model description
40
 
@@ -53,30 +53,31 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 9e-05
57
  - train_batch_size: 10
58
  - eval_batch_size: 10
59
  - seed: 42
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 18
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 1.9893 | 1.0 | 70 | 1.9671 | 0.4615 |
71
- | 1.1923 | 2.0 | 140 | 1.3634 | 0.5256 |
72
- | 1.1937 | 3.0 | 210 | 1.0865 | 0.6154 |
73
- | 0.5684 | 4.0 | 280 | 0.9352 | 0.6795 |
74
- | 0.4571 | 5.0 | 350 | 0.7889 | 0.7564 |
75
- | 0.1854 | 6.0 | 420 | 0.8209 | 0.7308 |
76
- | 0.0688 | 7.0 | 490 | 0.9835 | 0.7692 |
77
- | 0.087 | 8.0 | 560 | 1.1710 | 0.7179 |
78
- | 0.0109 | 9.0 | 630 | 1.0900 | 0.7692 |
79
- | 0.0049 | 10.0 | 700 | 1.2256 | 0.7692 |
 
80
 
81
 
82
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.7435897435897436
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.9861
37
+ - Accuracy: 0.7436
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
  - train_batch_size: 10
58
  - eval_batch_size: 10
59
  - seed: 42
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.1171 | 1.0 | 70 | 2.1232 | 0.2308 |
71
+ | 1.534 | 2.0 | 140 | 1.6014 | 0.5128 |
72
+ | 1.4328 | 3.0 | 210 | 1.2896 | 0.5641 |
73
+ | 0.8631 | 4.0 | 280 | 1.1275 | 0.5897 |
74
+ | 0.6448 | 5.0 | 350 | 1.0679 | 0.6667 |
75
+ | 0.482 | 6.0 | 420 | 0.8798 | 0.7051 |
76
+ | 0.2458 | 7.0 | 490 | 0.8290 | 0.7564 |
77
+ | 0.2264 | 8.0 | 560 | 0.8350 | 0.7564 |
78
+ | 0.1661 | 9.0 | 630 | 0.8284 | 0.7179 |
79
+ | 0.0286 | 10.0 | 700 | 0.9681 | 0.7179 |
80
+ | 0.0155 | 11.0 | 770 | 0.9861 | 0.7436 |
81
 
82
 
83
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c63b2198df209e8b28f629318e52b6d6aecf55bfcc5edc45938c01da556cc64
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff0ad47e6480f3f440adee032c969279e12b8620b7e122dadd241f6fdc706f5
3
  size 94771728