End of training
Browse files- README.md +16 -15
- model.safetensors +1 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss:
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,30 +53,31 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.7435897435897436
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.9861
|
37 |
+
- Accuracy: 0.7436
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
- train_batch_size: 10
|
58 |
- eval_batch_size: 10
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 20
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.1171 | 1.0 | 70 | 2.1232 | 0.2308 |
|
71 |
+
| 1.534 | 2.0 | 140 | 1.6014 | 0.5128 |
|
72 |
+
| 1.4328 | 3.0 | 210 | 1.2896 | 0.5641 |
|
73 |
+
| 0.8631 | 4.0 | 280 | 1.1275 | 0.5897 |
|
74 |
+
| 0.6448 | 5.0 | 350 | 1.0679 | 0.6667 |
|
75 |
+
| 0.482 | 6.0 | 420 | 0.8798 | 0.7051 |
|
76 |
+
| 0.2458 | 7.0 | 490 | 0.8290 | 0.7564 |
|
77 |
+
| 0.2264 | 8.0 | 560 | 0.8350 | 0.7564 |
|
78 |
+
| 0.1661 | 9.0 | 630 | 0.8284 | 0.7179 |
|
79 |
+
| 0.0286 | 10.0 | 700 | 0.9681 | 0.7179 |
|
80 |
+
| 0.0155 | 11.0 | 770 | 0.9861 | 0.7436 |
|
81 |
|
82 |
|
83 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff0ad47e6480f3f440adee032c969279e12b8620b7e122dadd241f6fdc706f5
|
3 |
size 94771728
|