--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7692307692307693 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2256 - Accuracy: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 18 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9893 | 1.0 | 70 | 1.9671 | 0.4615 | | 1.1923 | 2.0 | 140 | 1.3634 | 0.5256 | | 1.1937 | 3.0 | 210 | 1.0865 | 0.6154 | | 0.5684 | 4.0 | 280 | 0.9352 | 0.6795 | | 0.4571 | 5.0 | 350 | 0.7889 | 0.7564 | | 0.1854 | 6.0 | 420 | 0.8209 | 0.7308 | | 0.0688 | 7.0 | 490 | 0.9835 | 0.7692 | | 0.087 | 8.0 | 560 | 1.1710 | 0.7179 | | 0.0109 | 9.0 | 630 | 1.0900 | 0.7692 | | 0.0049 | 10.0 | 700 | 1.2256 | 0.7692 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0