--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.717948717948718 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8872 - Accuracy: 0.7179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2117 | 1.0 | 35 | 2.1969 | 0.1923 | | 1.9698 | 2.0 | 70 | 1.9327 | 0.3846 | | 1.6629 | 3.0 | 105 | 1.5580 | 0.5 | | 1.2324 | 4.0 | 140 | 1.3368 | 0.6154 | | 1.0466 | 5.0 | 175 | 1.1638 | 0.6538 | | 0.8969 | 6.0 | 210 | 1.0416 | 0.6923 | | 0.7626 | 7.0 | 245 | 0.9258 | 0.7436 | | 0.6015 | 8.0 | 280 | 1.0475 | 0.6667 | | 0.5003 | 9.0 | 315 | 0.8890 | 0.7308 | | 0.3956 | 10.0 | 350 | 0.8396 | 0.7564 | | 0.3228 | 11.0 | 385 | 0.8072 | 0.6795 | | 0.2558 | 12.0 | 420 | 0.7788 | 0.7308 | | 0.1901 | 13.0 | 455 | 0.8432 | 0.7308 | | 0.1251 | 14.0 | 490 | 0.8287 | 0.7051 | | 0.1185 | 15.0 | 525 | 0.8872 | 0.7179 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0