--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7729 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.188 | 1.0 | 35 | 2.1681 | 0.2692 | | 1.887 | 2.0 | 70 | 1.8252 | 0.5769 | | 1.5321 | 3.0 | 105 | 1.4375 | 0.5385 | | 1.0946 | 4.0 | 140 | 1.2295 | 0.6282 | | 0.9091 | 5.0 | 175 | 1.0390 | 0.6923 | | 0.6839 | 6.0 | 210 | 0.9047 | 0.7821 | | 0.5769 | 7.0 | 245 | 0.8309 | 0.7308 | | 0.4118 | 8.0 | 280 | 0.9522 | 0.6538 | | 0.3767 | 9.0 | 315 | 0.8164 | 0.7308 | | 0.2247 | 10.0 | 350 | 0.6987 | 0.8205 | | 0.1392 | 11.0 | 385 | 0.7565 | 0.7692 | | 0.0886 | 12.0 | 420 | 0.7082 | 0.8205 | | 0.0583 | 13.0 | 455 | 0.7529 | 0.8205 | | 0.0383 | 14.0 | 490 | 0.7678 | 0.7949 | | 0.0345 | 15.0 | 525 | 0.7480 | 0.8333 | | 0.0269 | 16.0 | 560 | 0.7542 | 0.8333 | | 0.0246 | 17.0 | 595 | 0.7550 | 0.8205 | | 0.0233 | 18.0 | 630 | 0.7725 | 0.8333 | | 0.0225 | 19.0 | 665 | 0.7701 | 0.8333 | | 0.0225 | 20.0 | 700 | 0.7729 | 0.8333 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0