--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7435897435897436 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9861 - Accuracy: 0.7436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1171 | 1.0 | 70 | 2.1232 | 0.2308 | | 1.534 | 2.0 | 140 | 1.6014 | 0.5128 | | 1.4328 | 3.0 | 210 | 1.2896 | 0.5641 | | 0.8631 | 4.0 | 280 | 1.1275 | 0.5897 | | 0.6448 | 5.0 | 350 | 1.0679 | 0.6667 | | 0.482 | 6.0 | 420 | 0.8798 | 0.7051 | | 0.2458 | 7.0 | 490 | 0.8290 | 0.7564 | | 0.2264 | 8.0 | 560 | 0.8350 | 0.7564 | | 0.1661 | 9.0 | 630 | 0.8284 | 0.7179 | | 0.0286 | 10.0 | 700 | 0.9681 | 0.7179 | | 0.0155 | 11.0 | 770 | 0.9861 | 0.7436 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0