--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7435897435897436 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8173 - Accuracy: 0.7436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1874 | 1.0 | 44 | 2.1429 | 0.3974 | | 1.8257 | 2.0 | 88 | 1.7390 | 0.4872 | | 1.4881 | 3.0 | 132 | 1.3711 | 0.6026 | | 1.0373 | 4.0 | 176 | 1.1632 | 0.6667 | | 0.7621 | 5.0 | 220 | 1.0026 | 0.7308 | | 0.6114 | 6.0 | 264 | 0.8857 | 0.7436 | | 0.5642 | 7.0 | 308 | 0.8796 | 0.7179 | | 0.3386 | 8.0 | 352 | 1.0714 | 0.6923 | | 0.3364 | 9.0 | 396 | 0.8363 | 0.7308 | | 0.1678 | 10.0 | 440 | 0.7834 | 0.7436 | | 0.1154 | 11.0 | 484 | 0.8173 | 0.7436 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0