varadsrivastava commited on
Commit
0bbd968
1 Parent(s): b5acf64

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ widget: []
13
+ pipeline_tag: text-classification
14
+ inference: true
15
+ model-index:
16
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
17
+ results:
18
+ - task:
19
+ type: text-classification
20
+ name: Text Classification
21
+ dataset:
22
+ name: Unknown
23
+ type: unknown
24
+ split: test
25
+ metrics:
26
+ - type: accuracy
27
+ value: 0.7616099071207431
28
+ name: Accuracy
29
+ - type: f1
30
+ value: 0.749185667752443
31
+ name: F1
32
+ ---
33
+
34
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
35
+
36
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
37
+
38
+ The model has been trained using an efficient few-shot learning technique that involves:
39
+
40
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
41
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** SetFit
47
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
48
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ <!-- - **Number of Classes:** Unknown -->
51
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
58
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
59
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
60
+
61
+ ## Evaluation
62
+
63
+ ### Metrics
64
+ | Label | Accuracy | F1 |
65
+ |:--------|:---------|:-------|
66
+ | **all** | 0.7616 | 0.7492 |
67
+
68
+ ## Uses
69
+
70
+ ### Direct Use for Inference
71
+
72
+ First install the SetFit library:
73
+
74
+ ```bash
75
+ pip install setfit
76
+ ```
77
+
78
+ Then you can load this model and run inference.
79
+
80
+ ```python
81
+ from setfit import SetFitModel
82
+
83
+ # Download from the 🤗 Hub
84
+ model = SetFitModel.from_pretrained("varadsrivastava/mpnetv2_setfit_finarg_finetuned")
85
+ # Run inference
86
+ preds = model("I loved the spiderman movie!")
87
+ ```
88
+
89
+ <!--
90
+ ### Downstream Use
91
+
92
+ *List how someone could finetune this model on their own dataset.*
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks and Limitations
103
+
104
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
111
+ -->
112
+
113
+ ## Training Details
114
+
115
+ ### Framework Versions
116
+ - Python: 3.10.12
117
+ - SetFit: 1.0.3
118
+ - Sentence Transformers: 2.7.0
119
+ - Transformers: 4.39.3
120
+ - PyTorch: 2.3.0+cu121
121
+ - Datasets: 2.19.1
122
+ - Tokenizers: 0.15.2
123
+
124
+ ## Citation
125
+
126
+ ### BibTeX
127
+ ```bibtex
128
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
129
+ doi = {10.48550/ARXIV.2209.11055},
130
+ url = {https://arxiv.org/abs/2209.11055},
131
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
132
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
133
+ title = {Efficient Few-Shot Learning Without Prompts},
134
+ publisher = {arXiv},
135
+ year = {2022},
136
+ copyright = {Creative Commons Attribution 4.0 International}
137
+ }
138
+ ```
139
+
140
+ <!--
141
+ ## Glossary
142
+
143
+ *Clearly define terms in order to be accessible across audiences.*
144
+ -->
145
+
146
+ <!--
147
+ ## Model Card Authors
148
+
149
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
150
+ -->
151
+
152
+ <!--
153
+ ## Model Card Contact
154
+
155
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
156
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215b014383eec8241ff700f512c31bcdaf34e09e52da3df89a761c08446301a6
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59267a4324ac3b535c149b1421b98d20669b14277aeedddc9b360e3eb8e52009
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff