varcoder commited on
Commit
162639f
1 Parent(s): e2280a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b5
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segcrack9k_conglomerate_segformer
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segcrack9k_conglomerate_segformer
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0857
19
+ - Mean Iou: 0.0010
20
+ - Mean Accuracy: 0.0021
21
+ - Overall Accuracy: 0.0021
22
+ - Accuracy Background: nan
23
+ - Accuracy Crack: 0.0021
24
+ - Iou Background: 0.0
25
+ - Iou Crack: 0.0021
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 8e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
56
+ | 0.0716 | 0.02 | 100 | 0.1132 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
57
+ | 0.0708 | 0.04 | 200 | 0.1006 | 0.0001 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
58
+ | 0.1661 | 0.06 | 300 | 0.1042 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
59
+ | 0.0601 | 0.08 | 400 | 0.1005 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
60
+ | 0.1034 | 0.1 | 500 | 0.0980 | 0.0237 | 0.0474 | 0.0474 | nan | 0.0474 | 0.0 | 0.0474 |
61
+ | 0.0581 | 0.12 | 600 | 0.0965 | 0.0003 | 0.0005 | 0.0005 | nan | 0.0005 | 0.0 | 0.0005 |
62
+ | 0.0561 | 0.14 | 700 | 0.1023 | 0.0038 | 0.0075 | 0.0075 | nan | 0.0075 | 0.0 | 0.0075 |
63
+ | 0.1034 | 0.16 | 800 | 0.0956 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
64
+ | 0.1341 | 0.18 | 900 | 0.0985 | 0.0185 | 0.0369 | 0.0369 | nan | 0.0369 | 0.0 | 0.0369 |
65
+ | 0.1988 | 0.2 | 1000 | 0.0946 | 0.0059 | 0.0118 | 0.0118 | nan | 0.0118 | 0.0 | 0.0118 |
66
+ | 0.0378 | 0.22 | 1100 | 0.0945 | 0.1402 | 0.2804 | 0.2804 | nan | 0.2804 | 0.0 | 0.2804 |
67
+ | 0.0582 | 0.24 | 1200 | 0.0907 | 0.0488 | 0.0976 | 0.0976 | nan | 0.0976 | 0.0 | 0.0976 |
68
+ | 0.1464 | 0.26 | 1300 | 0.0971 | 0.1701 | 0.3401 | 0.3401 | nan | 0.3401 | 0.0 | 0.3401 |
69
+ | 0.0601 | 0.28 | 1400 | 0.0893 | 0.0222 | 0.0444 | 0.0444 | nan | 0.0444 | 0.0 | 0.0444 |
70
+ | 0.0855 | 0.3 | 1500 | 0.0910 | 0.0307 | 0.0613 | 0.0613 | nan | 0.0613 | 0.0 | 0.0613 |
71
+ | 0.1167 | 0.32 | 1600 | 0.0895 | 0.0143 | 0.0286 | 0.0286 | nan | 0.0286 | 0.0 | 0.0286 |
72
+ | 0.0641 | 0.34 | 1700 | 0.0918 | 0.0073 | 0.0145 | 0.0145 | nan | 0.0145 | 0.0 | 0.0145 |
73
+ | 0.0621 | 0.36 | 1800 | 0.0927 | 0.0181 | 0.0363 | 0.0363 | nan | 0.0363 | 0.0 | 0.0363 |
74
+ | 0.0364 | 0.38 | 1900 | 0.0884 | 0.1397 | 0.2794 | 0.2794 | nan | 0.2794 | 0.0 | 0.2794 |
75
+ | 0.1394 | 0.4 | 2000 | 0.0903 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
76
+ | 0.0187 | 0.42 | 2100 | 0.0914 | 0.0124 | 0.0248 | 0.0248 | nan | 0.0248 | 0.0 | 0.0248 |
77
+ | 0.1842 | 0.44 | 2200 | 0.0908 | 0.0045 | 0.0090 | 0.0090 | nan | 0.0090 | 0.0 | 0.0090 |
78
+ | 0.0847 | 0.46 | 2300 | 0.0896 | 0.0031 | 0.0062 | 0.0062 | nan | 0.0062 | 0.0 | 0.0062 |
79
+ | 0.0556 | 0.48 | 2400 | 0.0871 | 0.0016 | 0.0033 | 0.0033 | nan | 0.0033 | 0.0 | 0.0033 |
80
+ | 0.0454 | 0.51 | 2500 | 0.0896 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 |
81
+ | 0.1411 | 0.53 | 2600 | 0.0876 | 0.0095 | 0.0190 | 0.0190 | nan | 0.0190 | 0.0 | 0.0190 |
82
+ | 0.1044 | 0.55 | 2700 | 0.0936 | 0.0001 | 0.0002 | 0.0002 | nan | 0.0002 | 0.0 | 0.0002 |
83
+ | 0.1299 | 0.57 | 2800 | 0.0938 | 0.0008 | 0.0017 | 0.0017 | nan | 0.0017 | 0.0 | 0.0017 |
84
+ | 0.0909 | 0.59 | 2900 | 0.0877 | 0.0012 | 0.0024 | 0.0024 | nan | 0.0024 | 0.0 | 0.0024 |
85
+ | 0.0981 | 0.61 | 3000 | 0.0914 | 0.0012 | 0.0024 | 0.0024 | nan | 0.0024 | 0.0 | 0.0024 |
86
+ | 0.0905 | 0.63 | 3100 | 0.0880 | 0.0077 | 0.0153 | 0.0153 | nan | 0.0153 | 0.0 | 0.0153 |
87
+ | 0.2111 | 0.65 | 3200 | 0.0877 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
88
+ | 0.3218 | 0.67 | 3300 | 0.0860 | 0.0036 | 0.0072 | 0.0072 | nan | 0.0072 | 0.0 | 0.0072 |
89
+ | 0.1134 | 0.69 | 3400 | 0.0864 | 0.0075 | 0.0151 | 0.0151 | nan | 0.0151 | 0.0 | 0.0151 |
90
+ | 0.2184 | 0.71 | 3500 | 0.0907 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
91
+ | 0.1779 | 0.73 | 3600 | 0.0877 | 0.0029 | 0.0059 | 0.0059 | nan | 0.0059 | 0.0 | 0.0059 |
92
+ | 0.3664 | 0.75 | 3700 | 0.0878 | 0.0001 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
93
+ | 0.0365 | 0.77 | 3800 | 0.0870 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
94
+ | 0.0591 | 0.79 | 3900 | 0.0877 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
95
+ | 0.0719 | 0.81 | 4000 | 0.0871 | 0.0004 | 0.0008 | 0.0008 | nan | 0.0008 | 0.0 | 0.0008 |
96
+ | 0.0402 | 0.83 | 4100 | 0.0874 | 0.0011 | 0.0022 | 0.0022 | nan | 0.0022 | 0.0 | 0.0022 |
97
+ | 0.0814 | 0.85 | 4200 | 0.0887 | 0.0008 | 0.0017 | 0.0017 | nan | 0.0017 | 0.0 | 0.0017 |
98
+ | 0.0485 | 0.87 | 4300 | 0.0871 | 0.0025 | 0.0050 | 0.0050 | nan | 0.0050 | 0.0 | 0.0050 |
99
+ | 0.0487 | 0.89 | 4400 | 0.0864 | 0.0004 | 0.0007 | 0.0007 | nan | 0.0007 | 0.0 | 0.0007 |
100
+ | 0.0689 | 0.91 | 4500 | 0.0859 | 0.0002 | 0.0004 | 0.0004 | nan | 0.0004 | 0.0 | 0.0004 |
101
+ | 0.0782 | 0.93 | 4600 | 0.0858 | 0.0018 | 0.0036 | 0.0036 | nan | 0.0036 | 0.0 | 0.0036 |
102
+ | 0.2153 | 0.95 | 4700 | 0.0855 | 0.0004 | 0.0008 | 0.0008 | nan | 0.0008 | 0.0 | 0.0008 |
103
+ | 0.1974 | 0.97 | 4800 | 0.0860 | 0.0004 | 0.0009 | 0.0009 | nan | 0.0009 | 0.0 | 0.0009 |
104
+ | 0.0184 | 0.99 | 4900 | 0.0857 | 0.0010 | 0.0021 | 0.0021 | nan | 0.0021 | 0.0 | 0.0021 |
105
+
106
+
107
+ ### Framework versions
108
+
109
+ - Transformers 4.31.0
110
+ - Pytorch 2.0.1+cu118
111
+ - Datasets 2.13.1
112
+ - Tokenizers 0.13.3