--- license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: segcrack9k_conglomerate_segformer results: [] --- # segcrack9k_conglomerate_segformer This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0333 - Mean Iou: 0.3608 - Mean Accuracy: 0.7217 - Overall Accuracy: 0.7217 - Accuracy Background: nan - Accuracy Crack: 0.7217 - Iou Background: 0.0 - Iou Crack: 0.7217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| | 0.0259 | 0.14 | 1000 | 0.0404 | 0.3267 | 0.6534 | 0.6534 | nan | 0.6534 | 0.0 | 0.6534 | | 0.0186 | 0.27 | 2000 | 0.0378 | 0.3586 | 0.7172 | 0.7172 | nan | 0.7172 | 0.0 | 0.7172 | | 0.0348 | 0.41 | 3000 | 0.0375 | 0.3209 | 0.6418 | 0.6418 | nan | 0.6418 | 0.0 | 0.6418 | | 0.011 | 0.54 | 4000 | 0.0356 | 0.3496 | 0.6991 | 0.6991 | nan | 0.6991 | 0.0 | 0.6991 | | 0.0132 | 0.68 | 5000 | 0.0350 | 0.3459 | 0.6918 | 0.6918 | nan | 0.6918 | 0.0 | 0.6918 | | 0.0573 | 0.81 | 6000 | 0.0339 | 0.3575 | 0.7149 | 0.7149 | nan | 0.7149 | 0.0 | 0.7149 | | 0.1466 | 0.95 | 7000 | 0.0333 | 0.3608 | 0.7217 | 0.7217 | nan | 0.7217 | 0.0 | 0.7217 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3