varcoder commited on
Commit
243b46f
·
1 Parent(s): 359be80

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b5
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segcrack9k_conglomerate_segformer_aug
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segcrack9k_conglomerate_segformer_aug
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0362
19
+ - Mean Iou: 0.3412
20
+ - Mean Accuracy: 0.6823
21
+ - Overall Accuracy: 0.6823
22
+ - Accuracy Background: nan
23
+ - Accuracy Crack: 0.6823
24
+ - Iou Background: 0.0
25
+ - Iou Crack: 0.6823
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
56
+ | 0.0323 | 0.14 | 1000 | 0.0445 | 0.3573 | 0.7146 | 0.7146 | nan | 0.7146 | 0.0 | 0.7146 |
57
+ | 0.0222 | 0.27 | 2000 | 0.0394 | 0.3591 | 0.7181 | 0.7181 | nan | 0.7181 | 0.0 | 0.7181 |
58
+ | 0.0335 | 0.41 | 3000 | 0.0404 | 0.2907 | 0.5813 | 0.5813 | nan | 0.5813 | 0.0 | 0.5813 |
59
+ | 0.013 | 0.54 | 4000 | 0.0384 | 0.3244 | 0.6489 | 0.6489 | nan | 0.6489 | 0.0 | 0.6489 |
60
+ | 0.0159 | 0.68 | 5000 | 0.0382 | 0.3088 | 0.6176 | 0.6176 | nan | 0.6176 | 0.0 | 0.6176 |
61
+ | 0.0608 | 0.81 | 6000 | 0.0366 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 |
62
+ | 0.1738 | 0.95 | 7000 | 0.0362 | 0.3412 | 0.6823 | 0.6823 | nan | 0.6823 | 0.0 | 0.6823 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.31.0
68
+ - Pytorch 2.0.1+cu118
69
+ - Datasets 2.14.3
70
+ - Tokenizers 0.13.3