vasilis commited on
Commit
387522c
1 Parent(s): 5d769d0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fi
3
+ datasets:
4
+ - common_voice
5
+ - CSS10 finnish: Single Speaker Speech Dataset
6
+ metrics:
7
+ - wer
8
+ - cer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - xlsr-fine-tuning-week
14
+ license: apache-2.0
15
+ model-index:
16
+ - name: V XLSR Wav2Vec2 Large 53 - finnish
17
+ results:
18
+ - task:
19
+ name: Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: Common Voice fi
23
+ type: common_voice
24
+ args: fi
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 47.117220
29
+ - name: Test CER
30
+ type: cer
31
+ value: 7.880525
32
+ ---
33
+
34
+ # Wav2Vec2-Large-XLSR-53-finnish
35
+
36
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 finnish: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset).
37
+ When using this model, make sure that your speech input is sampled at 16kHz.
38
+
39
+ ## Usage
40
+
41
+ The model can be used directly (without a language model) as follows:
42
+
43
+ ```python
44
+ import torch
45
+ import torchaudio
46
+ from datasets import load_dataset
47
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
48
+
49
+ test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
50
+
51
+ processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
52
+ model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
53
+
54
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
55
+
56
+ # Preprocessing the datasets.
57
+ # We need to read the aduio files as arrays
58
+ def speech_file_to_array_fn(batch):
59
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
60
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
61
+ return batch
62
+
63
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
64
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
65
+
66
+ with torch.no_grad():
67
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
68
+
69
+ predicted_ids = torch.argmax(logits, dim=-1)
70
+
71
+ print("Prediction:", processor.batch_decode(predicted_ids))
72
+ print("Reference:", test_dataset["sentence"][:2])
73
+ ```
74
+
75
+
76
+ ## Evaluation
77
+
78
+ The model can be evaluated as follows on the finnish test data of Common Voice.
79
+
80
+
81
+ ```python
82
+ import torch
83
+ import torchaudio
84
+ from datasets import load_dataset, load_metric
85
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
86
+ import re
87
+
88
+ test_dataset = load_dataset("common_voice", "fi", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
89
+ wer = load_metric("wer")
90
+
91
+ processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
92
+ model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
93
+ model.to("cuda")
94
+
95
+ chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data
96
+ replacements = {"…": "", "–": ''}
97
+
98
+ resampler = {
99
+ 48_000: torchaudio.transforms.Resample(48_000, 16_000),
100
+ 44100: torchaudio.transforms.Resample(44100, 16_000),
101
+ 32000: torchaudio.transforms.Resample(32000, 16_000)
102
+ }
103
+
104
+
105
+ # Preprocessing the datasets.
106
+ # We need to read the aduio files as arrays
107
+ def speech_file_to_array_fn(batch):
108
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
109
+ for key, value in replacements.items():
110
+ batch["sentence"] = batch["sentence"].replace(key, value)
111
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
112
+ batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
113
+ return batch
114
+
115
+
116
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
117
+
118
+ # Preprocessing the datasets.
119
+ # We need to read the aduio files as arrays
120
+ def evaluate(batch):
121
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
122
+
123
+ with torch.no_grad():
124
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
125
+
126
+ pred_ids = torch.argmax(logits, dim=-1)
127
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
128
+ return batch
129
+
130
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
131
+
132
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
133
+ print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
134
+
135
+ ```
136
+
137
+ **Test Result**: 47.117220 %
138
+
139
+
140
+ ## Training
141
+
142
+
143
+ The Common Voice train dataset was used for training. Also all of `CSS10 Finnish` was used using the normalized transcripts.
144
+ The model hasn't converged yet.
145
+
146
+
147
+
148
+