vasilis commited on
Commit
424132d
1 Parent(s): 5c7acdc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: el
3
+ datasets:
4
+ - common_voice
5
+ - CSS10 Greek: Single Speaker Speech Dataset
6
+ metrics:
7
+ - wer
8
+ - cer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - xlsr-fine-tuning-week
14
+ license: apache-2.0
15
+ model-index:
16
+ - name: V XLSR Wav2Vec2 Large 53 - greek
17
+ results:
18
+ - task:
19
+ name: Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: Common Voice el
23
+ type: common_voice
24
+ args: el
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 18.996669
29
+ - name: Test CER
30
+ type: cer
31
+ value: 5.781874
32
+ ---
33
+
34
+ # Wav2Vec2-Large-XLSR-53-greek
35
+
36
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 Greek: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/greek-single-speaker-speech-dataset).
37
+ When using this model, make sure that your speech input is sampled at 16kHz.
38
+
39
+ ## Usage
40
+
41
+ The model can be used directly (without a language model) as follows:
42
+
43
+ ```python
44
+ import torch
45
+ import torchaudio
46
+ from datasets import load_dataset
47
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
48
+
49
+ test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
50
+
51
+ processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
52
+ model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
53
+
54
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
55
+
56
+ # Preprocessing the datasets.
57
+ # We need to read the aduio files as arrays
58
+ def speech_file_to_array_fn(batch):
59
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
60
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
61
+ return batch
62
+
63
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
64
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
65
+
66
+ with torch.no_grad():
67
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
68
+
69
+ predicted_ids = torch.argmax(logits, dim=-1)
70
+
71
+ print("Prediction:", processor.batch_decode(predicted_ids))
72
+ print("Reference:", test_dataset["sentence"][:2])
73
+ ```
74
+
75
+
76
+ ## Evaluation
77
+
78
+ The model can be evaluated as follows on the greek test data of Common Voice.
79
+
80
+
81
+ ```python
82
+ import torch
83
+ import torchaudio
84
+ from datasets import load_dataset, load_metric
85
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
86
+ import re
87
+
88
+ test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
89
+ wer = load_metric("wer")
90
+
91
+ processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
92
+ model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
93
+ model.to("cuda")
94
+
95
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
96
+
97
+ normalize_greek_letters = {"ς": "σ"}
98
+ # normalize_greek_letters = {"ά": "α", "έ": "ε", "ί": "ι", 'ϊ': "ι", "ύ": "υ", "ς": "σ", "ΐ": "ι", 'ϋ': "υ", "ή": "η", "ώ": "ω", 'ό': "ο"}
99
+ remove_chars_greek = {"a": "", "h": "", "n": "", "g": "", "o": "", "v": "", "e": "", "r": "", "t": "", "«": "", "»": "", "m": "", '́': '', "·": "", "’": "", '´': ""}
100
+ replacements = {**normalize_greek_letters, **remove_chars_greek}
101
+
102
+ resampler = {
103
+ 48_000: torchaudio.transforms.Resample(48_000, 16_000),
104
+ 44100: torchaudio.transforms.Resample(44100, 16_000),
105
+ 32000: torchaudio.transforms.Resample(32000, 16_000)
106
+ }
107
+
108
+
109
+ # Preprocessing the datasets.
110
+ # We need to read the aduio files as arrays
111
+ def speech_file_to_array_fn(batch):
112
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
113
+ for key, value in replacements.items():
114
+ batch["sentence"] = batch["sentence"].replace(key, value)
115
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
116
+ batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
117
+ return batch
118
+
119
+
120
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
121
+
122
+ # Preprocessing the datasets.
123
+ # We need to read the aduio files as arrays
124
+ def evaluate(batch):
125
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
126
+
127
+ with torch.no_grad():
128
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
129
+
130
+ pred_ids = torch.argmax(logits, dim=-1)
131
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
132
+ return batch
133
+
134
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
135
+
136
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
137
+ print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
138
+
139
+ ```
140
+
141
+ **Test Result**: 18.996669 %
142
+
143
+
144
+ ## Training
145
+
146
+
147
+ The Common Voice train dataset was used for training. Also all of `CSS10 Greek` was used using the normalized transcripts.
148
+ During text preprocessing letter `ς` is normalized to `σ` the reason is that both letters sound the same with `ς` only used as the ending character of words. So, the change can be mapped up to proper dictation easily. I tried removing all accents from letters as well that improved `WER` significantly. The model was reaching `17%` WER easily without having converged. However, the text preprocessing needed to do after to fix transcrtiptions would be more complicated. A language model should fix things easily though. Another thing that could be tried out would be to change all of `ι`, `η` ... etc to a single character since all sound the same. similar for `o` and `ω` these should help the acoustic model part significantly since all these characters map to the same sound. But further text normlization would be needed.
149
+
150
+
151
+
152
+