vdavidr commited on
Commit
5b4b647
1 Parent(s): e8d5dc9

Add readme

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: codellama/CodeLlama-13b-Instruct-hf
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - bleu
9
+ - sacrebleu
10
+ - rouge
11
+ model-index:
12
+ - name: CodeLlama-13b-Instruct-hf_En__size_52_epochs_10_2024-06-21_06-37-42_3556410
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # CodeLlama-13b-Instruct-hf_En__size_52_epochs_10_2024-06-21_06-37-42_3556410
20
+
21
+ This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.6986
24
+ - Accuracy: 0.052
25
+ - Chrf: 0.682
26
+ - Bleu: 0.599
27
+ - Sacrebleu: 0.6
28
+ - Rouge1: 0.651
29
+ - Rouge2: 0.434
30
+ - Rougel: 0.601
31
+ - Rougelsum: 0.644
32
+ - Meteor: 0.54
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 0.001
52
+ - train_batch_size: 1
53
+ - eval_batch_size: 1
54
+ - seed: 3407
55
+ - distributed_type: multi-GPU
56
+ - num_devices: 4
57
+ - total_train_batch_size: 4
58
+ - total_eval_batch_size: 4
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 52
62
+ - training_steps: 520
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:|:-----:|:---------:|:------:|:------:|:------:|:---------:|:------:|
68
+ | 0.5377 | 4.0 | 52 | 1.6208 | 0.06 | 0.637 | 0.525 | 0.5 | 0.619 | 0.387 | 0.564 | 0.608 | 0.488 |
69
+ | 0.932 | 8.0 | 104 | 2.1202 | 0.05 | 0.554 | 0.452 | 0.5 | 0.569 | 0.313 | 0.515 | 0.566 | 0.485 |
70
+ | 0.3679 | 12.0 | 156 | 1.9634 | 0.049 | 0.606 | 0.488 | 0.5 | 0.594 | 0.371 | 0.549 | 0.59 | 0.491 |
71
+ | 0.3454 | 16.0 | 208 | 1.9613 | 0.053 | 0.601 | 0.487 | 0.5 | 0.571 | 0.325 | 0.524 | 0.566 | 0.504 |
72
+ | 0.3294 | 20.0 | 260 | 1.8641 | 0.05 | 0.638 | 0.536 | 0.5 | 0.611 | 0.388 | 0.568 | 0.604 | 0.516 |
73
+ | 0.5272 | 24.0 | 312 | 1.8354 | 0.052 | 0.644 | 0.535 | 0.5 | 0.609 | 0.368 | 0.559 | 0.603 | 0.531 |
74
+ | 0.1871 | 28.0 | 364 | 1.7705 | 0.054 | 0.659 | 0.568 | 0.6 | 0.627 | 0.41 | 0.586 | 0.624 | 0.54 |
75
+ | 0.4867 | 32.0 | 416 | 1.7689 | 0.052 | 0.665 | 0.571 | 0.6 | 0.63 | 0.406 | 0.579 | 0.624 | 0.562 |
76
+ | 0.1634 | 36.0 | 468 | 1.6964 | 0.052 | 0.682 | 0.601 | 0.6 | 0.658 | 0.444 | 0.605 | 0.65 | 0.538 |
77
+ | 0.3475 | 40.0 | 520 | 1.6986 | 0.052 | 0.682 | 0.599 | 0.6 | 0.651 | 0.434 | 0.601 | 0.644 | 0.54 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.37.0
83
+ - Pytorch 2.2.1+cu121
84
+ - Datasets 2.20.0
85
+ - Tokenizers 0.15.2