Add readme
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: codellama/CodeLlama-13b-Instruct-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- bleu
|
9 |
+
- sacrebleu
|
10 |
+
- rouge
|
11 |
+
model-index:
|
12 |
+
- name: CodeLlama-13b-Instruct-hf_En__size_52_epochs_10_2024-06-21_06-37-42_3556410
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# CodeLlama-13b-Instruct-hf_En__size_52_epochs_10_2024-06-21_06-37-42_3556410
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.6986
|
24 |
+
- Accuracy: 0.052
|
25 |
+
- Chrf: 0.682
|
26 |
+
- Bleu: 0.599
|
27 |
+
- Sacrebleu: 0.6
|
28 |
+
- Rouge1: 0.651
|
29 |
+
- Rouge2: 0.434
|
30 |
+
- Rougel: 0.601
|
31 |
+
- Rougelsum: 0.644
|
32 |
+
- Meteor: 0.54
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 0.001
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 3407
|
55 |
+
- distributed_type: multi-GPU
|
56 |
+
- num_devices: 4
|
57 |
+
- total_train_batch_size: 4
|
58 |
+
- total_eval_batch_size: 4
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 52
|
62 |
+
- training_steps: 520
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:|:-----:|:---------:|:------:|:------:|:------:|:---------:|:------:|
|
68 |
+
| 0.5377 | 4.0 | 52 | 1.6208 | 0.06 | 0.637 | 0.525 | 0.5 | 0.619 | 0.387 | 0.564 | 0.608 | 0.488 |
|
69 |
+
| 0.932 | 8.0 | 104 | 2.1202 | 0.05 | 0.554 | 0.452 | 0.5 | 0.569 | 0.313 | 0.515 | 0.566 | 0.485 |
|
70 |
+
| 0.3679 | 12.0 | 156 | 1.9634 | 0.049 | 0.606 | 0.488 | 0.5 | 0.594 | 0.371 | 0.549 | 0.59 | 0.491 |
|
71 |
+
| 0.3454 | 16.0 | 208 | 1.9613 | 0.053 | 0.601 | 0.487 | 0.5 | 0.571 | 0.325 | 0.524 | 0.566 | 0.504 |
|
72 |
+
| 0.3294 | 20.0 | 260 | 1.8641 | 0.05 | 0.638 | 0.536 | 0.5 | 0.611 | 0.388 | 0.568 | 0.604 | 0.516 |
|
73 |
+
| 0.5272 | 24.0 | 312 | 1.8354 | 0.052 | 0.644 | 0.535 | 0.5 | 0.609 | 0.368 | 0.559 | 0.603 | 0.531 |
|
74 |
+
| 0.1871 | 28.0 | 364 | 1.7705 | 0.054 | 0.659 | 0.568 | 0.6 | 0.627 | 0.41 | 0.586 | 0.624 | 0.54 |
|
75 |
+
| 0.4867 | 32.0 | 416 | 1.7689 | 0.052 | 0.665 | 0.571 | 0.6 | 0.63 | 0.406 | 0.579 | 0.624 | 0.562 |
|
76 |
+
| 0.1634 | 36.0 | 468 | 1.6964 | 0.052 | 0.682 | 0.601 | 0.6 | 0.658 | 0.444 | 0.605 | 0.65 | 0.538 |
|
77 |
+
| 0.3475 | 40.0 | 520 | 1.6986 | 0.052 | 0.682 | 0.599 | 0.6 | 0.651 | 0.434 | 0.601 | 0.644 | 0.54 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.37.0
|
83 |
+
- Pytorch 2.2.1+cu121
|
84 |
+
- Datasets 2.20.0
|
85 |
+
- Tokenizers 0.15.2
|