camenduru commited on
Commit
b2dff33
·
1 Parent(s): b3553a1

thanks to showlab ❤

Browse files
__pycache__/unet_3d_blocks.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
__pycache__/unet_3d_condition.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
unet_3d_blocks.py ADDED
@@ -0,0 +1,842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.utils.checkpoint as checkpoint
17
+ from torch import nn
18
+ from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
19
+ from diffusers.models.transformer_2d import Transformer2DModel
20
+ from diffusers.models.transformer_temporal import TransformerTemporalModel
21
+
22
+ # Assign gradient checkpoint function to simple variable for readability.
23
+ g_c = checkpoint.checkpoint
24
+
25
+ def use_temporal(module, num_frames, x):
26
+ if num_frames == 1:
27
+ if isinstance(module, TransformerTemporalModel):
28
+ return {"sample": x}
29
+ else:
30
+ return x
31
+
32
+ def custom_checkpoint(module, mode=None):
33
+ if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.')
34
+ custom_forward = None
35
+
36
+ if mode == 'resnet':
37
+ def custom_forward(hidden_states, temb):
38
+ inputs = module(hidden_states, temb)
39
+ return inputs
40
+
41
+ if mode == 'attn':
42
+ def custom_forward(
43
+ hidden_states,
44
+ encoder_hidden_states=None,
45
+ cross_attention_kwargs=None
46
+ ):
47
+ inputs = module(
48
+ hidden_states,
49
+ encoder_hidden_states,
50
+ cross_attention_kwargs
51
+ )
52
+ return inputs
53
+
54
+ if mode == 'temp':
55
+ def custom_forward(hidden_states, num_frames=None):
56
+ inputs = use_temporal(module, num_frames, hidden_states)
57
+ if inputs is None: inputs = module(
58
+ hidden_states,
59
+ num_frames=num_frames
60
+ )
61
+ return inputs
62
+
63
+ return custom_forward
64
+
65
+ def transformer_g_c(transformer, sample, num_frames):
66
+ sample = g_c(custom_checkpoint(transformer, mode='temp'),
67
+ sample, num_frames, use_reentrant=False
68
+ )['sample']
69
+
70
+ return sample
71
+
72
+ def cross_attn_g_c(
73
+ attn,
74
+ temp_attn,
75
+ resnet,
76
+ temp_conv,
77
+ hidden_states,
78
+ encoder_hidden_states,
79
+ cross_attention_kwargs,
80
+ temb,
81
+ num_frames,
82
+ inverse_temp=False
83
+ ):
84
+
85
+ def ordered_g_c(idx):
86
+
87
+ # Self and CrossAttention
88
+ if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'),
89
+ hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False
90
+ )['sample']
91
+
92
+ # Temporal Self and CrossAttention
93
+ if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'),
94
+ hidden_states, num_frames, use_reentrant=False)['sample']
95
+
96
+ # Resnets
97
+ if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'),
98
+ hidden_states, temb, use_reentrant=False)
99
+
100
+ # Temporal Convolutions
101
+ if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'),
102
+ hidden_states, num_frames, use_reentrant=False
103
+ )
104
+
105
+ # Here we call the function depending on the order in which they are called.
106
+ # For some layers, the orders are different, so we access the appropriate one by index.
107
+
108
+ if not inverse_temp:
109
+ for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx)
110
+ else:
111
+ for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx)
112
+
113
+ return hidden_states
114
+
115
+ def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames):
116
+ hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False)
117
+ hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'),
118
+ hidden_states, num_frames, use_reentrant=False
119
+ )
120
+ return hidden_states
121
+
122
+ def get_down_block(
123
+ down_block_type,
124
+ num_layers,
125
+ in_channels,
126
+ out_channels,
127
+ temb_channels,
128
+ add_downsample,
129
+ resnet_eps,
130
+ resnet_act_fn,
131
+ attn_num_head_channels,
132
+ resnet_groups=None,
133
+ cross_attention_dim=None,
134
+ downsample_padding=None,
135
+ dual_cross_attention=False,
136
+ use_linear_projection=True,
137
+ only_cross_attention=False,
138
+ upcast_attention=False,
139
+ resnet_time_scale_shift="default",
140
+ ):
141
+ if down_block_type == "DownBlock3D":
142
+ return DownBlock3D(
143
+ num_layers=num_layers,
144
+ in_channels=in_channels,
145
+ out_channels=out_channels,
146
+ temb_channels=temb_channels,
147
+ add_downsample=add_downsample,
148
+ resnet_eps=resnet_eps,
149
+ resnet_act_fn=resnet_act_fn,
150
+ resnet_groups=resnet_groups,
151
+ downsample_padding=downsample_padding,
152
+ resnet_time_scale_shift=resnet_time_scale_shift,
153
+ )
154
+ elif down_block_type == "CrossAttnDownBlock3D":
155
+ if cross_attention_dim is None:
156
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
157
+ return CrossAttnDownBlock3D(
158
+ num_layers=num_layers,
159
+ in_channels=in_channels,
160
+ out_channels=out_channels,
161
+ temb_channels=temb_channels,
162
+ add_downsample=add_downsample,
163
+ resnet_eps=resnet_eps,
164
+ resnet_act_fn=resnet_act_fn,
165
+ resnet_groups=resnet_groups,
166
+ downsample_padding=downsample_padding,
167
+ cross_attention_dim=cross_attention_dim,
168
+ attn_num_head_channels=attn_num_head_channels,
169
+ dual_cross_attention=dual_cross_attention,
170
+ use_linear_projection=use_linear_projection,
171
+ only_cross_attention=only_cross_attention,
172
+ upcast_attention=upcast_attention,
173
+ resnet_time_scale_shift=resnet_time_scale_shift,
174
+ )
175
+ raise ValueError(f"{down_block_type} does not exist.")
176
+
177
+
178
+ def get_up_block(
179
+ up_block_type,
180
+ num_layers,
181
+ in_channels,
182
+ out_channels,
183
+ prev_output_channel,
184
+ temb_channels,
185
+ add_upsample,
186
+ resnet_eps,
187
+ resnet_act_fn,
188
+ attn_num_head_channels,
189
+ resnet_groups=None,
190
+ cross_attention_dim=None,
191
+ dual_cross_attention=False,
192
+ use_linear_projection=True,
193
+ only_cross_attention=False,
194
+ upcast_attention=False,
195
+ resnet_time_scale_shift="default",
196
+ ):
197
+ if up_block_type == "UpBlock3D":
198
+ return UpBlock3D(
199
+ num_layers=num_layers,
200
+ in_channels=in_channels,
201
+ out_channels=out_channels,
202
+ prev_output_channel=prev_output_channel,
203
+ temb_channels=temb_channels,
204
+ add_upsample=add_upsample,
205
+ resnet_eps=resnet_eps,
206
+ resnet_act_fn=resnet_act_fn,
207
+ resnet_groups=resnet_groups,
208
+ resnet_time_scale_shift=resnet_time_scale_shift,
209
+ )
210
+ elif up_block_type == "CrossAttnUpBlock3D":
211
+ if cross_attention_dim is None:
212
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
213
+ return CrossAttnUpBlock3D(
214
+ num_layers=num_layers,
215
+ in_channels=in_channels,
216
+ out_channels=out_channels,
217
+ prev_output_channel=prev_output_channel,
218
+ temb_channels=temb_channels,
219
+ add_upsample=add_upsample,
220
+ resnet_eps=resnet_eps,
221
+ resnet_act_fn=resnet_act_fn,
222
+ resnet_groups=resnet_groups,
223
+ cross_attention_dim=cross_attention_dim,
224
+ attn_num_head_channels=attn_num_head_channels,
225
+ dual_cross_attention=dual_cross_attention,
226
+ use_linear_projection=use_linear_projection,
227
+ only_cross_attention=only_cross_attention,
228
+ upcast_attention=upcast_attention,
229
+ resnet_time_scale_shift=resnet_time_scale_shift,
230
+ )
231
+ raise ValueError(f"{up_block_type} does not exist.")
232
+
233
+
234
+ class UNetMidBlock3DCrossAttn(nn.Module):
235
+ def __init__(
236
+ self,
237
+ in_channels: int,
238
+ temb_channels: int,
239
+ dropout: float = 0.0,
240
+ num_layers: int = 1,
241
+ resnet_eps: float = 1e-6,
242
+ resnet_time_scale_shift: str = "default",
243
+ resnet_act_fn: str = "swish",
244
+ resnet_groups: int = 32,
245
+ resnet_pre_norm: bool = True,
246
+ attn_num_head_channels=1,
247
+ output_scale_factor=1.0,
248
+ cross_attention_dim=1280,
249
+ dual_cross_attention=False,
250
+ use_linear_projection=True,
251
+ upcast_attention=False,
252
+ ):
253
+ super().__init__()
254
+
255
+ self.gradient_checkpointing = False
256
+ self.has_cross_attention = True
257
+ self.attn_num_head_channels = attn_num_head_channels
258
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
259
+
260
+ # there is always at least one resnet
261
+ resnets = [
262
+ ResnetBlock2D(
263
+ in_channels=in_channels,
264
+ out_channels=in_channels,
265
+ temb_channels=temb_channels,
266
+ eps=resnet_eps,
267
+ groups=resnet_groups,
268
+ dropout=dropout,
269
+ time_embedding_norm=resnet_time_scale_shift,
270
+ non_linearity=resnet_act_fn,
271
+ output_scale_factor=output_scale_factor,
272
+ pre_norm=resnet_pre_norm,
273
+ )
274
+ ]
275
+ temp_convs = [
276
+ TemporalConvLayer(
277
+ in_channels,
278
+ in_channels,
279
+ dropout=0.1
280
+ )
281
+ ]
282
+ attentions = []
283
+ temp_attentions = []
284
+
285
+ for _ in range(num_layers):
286
+ attentions.append(
287
+ Transformer2DModel(
288
+ in_channels // attn_num_head_channels,
289
+ attn_num_head_channels,
290
+ in_channels=in_channels,
291
+ num_layers=1,
292
+ cross_attention_dim=cross_attention_dim,
293
+ norm_num_groups=resnet_groups,
294
+ use_linear_projection=use_linear_projection,
295
+ upcast_attention=upcast_attention,
296
+ )
297
+ )
298
+ temp_attentions.append(
299
+ TransformerTemporalModel(
300
+ in_channels // attn_num_head_channels,
301
+ attn_num_head_channels,
302
+ in_channels=in_channels,
303
+ num_layers=1,
304
+ cross_attention_dim=cross_attention_dim,
305
+ norm_num_groups=resnet_groups,
306
+ )
307
+ )
308
+ resnets.append(
309
+ ResnetBlock2D(
310
+ in_channels=in_channels,
311
+ out_channels=in_channels,
312
+ temb_channels=temb_channels,
313
+ eps=resnet_eps,
314
+ groups=resnet_groups,
315
+ dropout=dropout,
316
+ time_embedding_norm=resnet_time_scale_shift,
317
+ non_linearity=resnet_act_fn,
318
+ output_scale_factor=output_scale_factor,
319
+ pre_norm=resnet_pre_norm,
320
+ )
321
+ )
322
+ temp_convs.append(
323
+ TemporalConvLayer(
324
+ in_channels,
325
+ in_channels,
326
+ dropout=0.1
327
+ )
328
+ )
329
+
330
+ self.resnets = nn.ModuleList(resnets)
331
+ self.temp_convs = nn.ModuleList(temp_convs)
332
+ self.attentions = nn.ModuleList(attentions)
333
+ self.temp_attentions = nn.ModuleList(temp_attentions)
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states,
338
+ temb=None,
339
+ encoder_hidden_states=None,
340
+ attention_mask=None,
341
+ num_frames=1,
342
+ cross_attention_kwargs=None,
343
+ ):
344
+ if self.gradient_checkpointing:
345
+ hidden_states = up_down_g_c(
346
+ self.resnets[0],
347
+ self.temp_convs[0],
348
+ hidden_states,
349
+ temb,
350
+ num_frames
351
+ )
352
+ else:
353
+ hidden_states = self.resnets[0](hidden_states, temb)
354
+ hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
355
+
356
+ for attn, temp_attn, resnet, temp_conv in zip(
357
+ self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
358
+ ):
359
+ if self.gradient_checkpointing:
360
+ hidden_states = cross_attn_g_c(
361
+ attn,
362
+ temp_attn,
363
+ resnet,
364
+ temp_conv,
365
+ hidden_states,
366
+ encoder_hidden_states,
367
+ cross_attention_kwargs,
368
+ temb,
369
+ num_frames
370
+ )
371
+ else:
372
+ hidden_states = attn(
373
+ hidden_states,
374
+ encoder_hidden_states=encoder_hidden_states,
375
+ cross_attention_kwargs=cross_attention_kwargs,
376
+ ).sample
377
+
378
+ if num_frames > 1:
379
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
380
+
381
+ hidden_states = resnet(hidden_states, temb)
382
+
383
+ if num_frames > 1:
384
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
385
+
386
+ return hidden_states
387
+
388
+
389
+ class CrossAttnDownBlock3D(nn.Module):
390
+ def __init__(
391
+ self,
392
+ in_channels: int,
393
+ out_channels: int,
394
+ temb_channels: int,
395
+ dropout: float = 0.0,
396
+ num_layers: int = 1,
397
+ resnet_eps: float = 1e-6,
398
+ resnet_time_scale_shift: str = "default",
399
+ resnet_act_fn: str = "swish",
400
+ resnet_groups: int = 32,
401
+ resnet_pre_norm: bool = True,
402
+ attn_num_head_channels=1,
403
+ cross_attention_dim=1280,
404
+ output_scale_factor=1.0,
405
+ downsample_padding=1,
406
+ add_downsample=True,
407
+ dual_cross_attention=False,
408
+ use_linear_projection=False,
409
+ only_cross_attention=False,
410
+ upcast_attention=False,
411
+ ):
412
+ super().__init__()
413
+ resnets = []
414
+ attentions = []
415
+ temp_attentions = []
416
+ temp_convs = []
417
+
418
+ self.gradient_checkpointing = False
419
+ self.has_cross_attention = True
420
+ self.attn_num_head_channels = attn_num_head_channels
421
+
422
+ for i in range(num_layers):
423
+ in_channels = in_channels if i == 0 else out_channels
424
+ resnets.append(
425
+ ResnetBlock2D(
426
+ in_channels=in_channels,
427
+ out_channels=out_channels,
428
+ temb_channels=temb_channels,
429
+ eps=resnet_eps,
430
+ groups=resnet_groups,
431
+ dropout=dropout,
432
+ time_embedding_norm=resnet_time_scale_shift,
433
+ non_linearity=resnet_act_fn,
434
+ output_scale_factor=output_scale_factor,
435
+ pre_norm=resnet_pre_norm,
436
+ )
437
+ )
438
+ temp_convs.append(
439
+ TemporalConvLayer(
440
+ out_channels,
441
+ out_channels,
442
+ dropout=0.1
443
+ )
444
+ )
445
+ attentions.append(
446
+ Transformer2DModel(
447
+ out_channels // attn_num_head_channels,
448
+ attn_num_head_channels,
449
+ in_channels=out_channels,
450
+ num_layers=1,
451
+ cross_attention_dim=cross_attention_dim,
452
+ norm_num_groups=resnet_groups,
453
+ use_linear_projection=use_linear_projection,
454
+ only_cross_attention=only_cross_attention,
455
+ upcast_attention=upcast_attention,
456
+ )
457
+ )
458
+ temp_attentions.append(
459
+ TransformerTemporalModel(
460
+ out_channels // attn_num_head_channels,
461
+ attn_num_head_channels,
462
+ in_channels=out_channels,
463
+ num_layers=1,
464
+ cross_attention_dim=cross_attention_dim,
465
+ norm_num_groups=resnet_groups,
466
+ )
467
+ )
468
+ self.resnets = nn.ModuleList(resnets)
469
+ self.temp_convs = nn.ModuleList(temp_convs)
470
+ self.attentions = nn.ModuleList(attentions)
471
+ self.temp_attentions = nn.ModuleList(temp_attentions)
472
+
473
+ if add_downsample:
474
+ self.downsamplers = nn.ModuleList(
475
+ [
476
+ Downsample2D(
477
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
478
+ )
479
+ ]
480
+ )
481
+ else:
482
+ self.downsamplers = None
483
+
484
+ def forward(
485
+ self,
486
+ hidden_states,
487
+ temb=None,
488
+ encoder_hidden_states=None,
489
+ attention_mask=None,
490
+ num_frames=1,
491
+ cross_attention_kwargs=None,
492
+ ):
493
+ # TODO(Patrick, William) - attention mask is not used
494
+ output_states = ()
495
+
496
+ for resnet, temp_conv, attn, temp_attn in zip(
497
+ self.resnets, self.temp_convs, self.attentions, self.temp_attentions
498
+ ):
499
+
500
+ if self.gradient_checkpointing:
501
+ hidden_states = cross_attn_g_c(
502
+ attn,
503
+ temp_attn,
504
+ resnet,
505
+ temp_conv,
506
+ hidden_states,
507
+ encoder_hidden_states,
508
+ cross_attention_kwargs,
509
+ temb,
510
+ num_frames,
511
+ inverse_temp=True
512
+ )
513
+ else:
514
+ hidden_states = resnet(hidden_states, temb)
515
+
516
+ if num_frames > 1:
517
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
518
+
519
+ hidden_states = attn(
520
+ hidden_states,
521
+ encoder_hidden_states=encoder_hidden_states,
522
+ cross_attention_kwargs=cross_attention_kwargs,
523
+ ).sample
524
+
525
+ if num_frames > 1:
526
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
527
+
528
+ output_states += (hidden_states,)
529
+
530
+ if self.downsamplers is not None:
531
+ for downsampler in self.downsamplers:
532
+ hidden_states = downsampler(hidden_states)
533
+
534
+ output_states += (hidden_states,)
535
+
536
+ return hidden_states, output_states
537
+
538
+
539
+ class DownBlock3D(nn.Module):
540
+ def __init__(
541
+ self,
542
+ in_channels: int,
543
+ out_channels: int,
544
+ temb_channels: int,
545
+ dropout: float = 0.0,
546
+ num_layers: int = 1,
547
+ resnet_eps: float = 1e-6,
548
+ resnet_time_scale_shift: str = "default",
549
+ resnet_act_fn: str = "swish",
550
+ resnet_groups: int = 32,
551
+ resnet_pre_norm: bool = True,
552
+ output_scale_factor=1.0,
553
+ add_downsample=True,
554
+ downsample_padding=1,
555
+ ):
556
+ super().__init__()
557
+ resnets = []
558
+ temp_convs = []
559
+
560
+ self.gradient_checkpointing = False
561
+ for i in range(num_layers):
562
+ in_channels = in_channels if i == 0 else out_channels
563
+ resnets.append(
564
+ ResnetBlock2D(
565
+ in_channels=in_channels,
566
+ out_channels=out_channels,
567
+ temb_channels=temb_channels,
568
+ eps=resnet_eps,
569
+ groups=resnet_groups,
570
+ dropout=dropout,
571
+ time_embedding_norm=resnet_time_scale_shift,
572
+ non_linearity=resnet_act_fn,
573
+ output_scale_factor=output_scale_factor,
574
+ pre_norm=resnet_pre_norm,
575
+ )
576
+ )
577
+ temp_convs.append(
578
+ TemporalConvLayer(
579
+ out_channels,
580
+ out_channels,
581
+ dropout=0.1
582
+ )
583
+ )
584
+
585
+ self.resnets = nn.ModuleList(resnets)
586
+ self.temp_convs = nn.ModuleList(temp_convs)
587
+
588
+ if add_downsample:
589
+ self.downsamplers = nn.ModuleList(
590
+ [
591
+ Downsample2D(
592
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
593
+ )
594
+ ]
595
+ )
596
+ else:
597
+ self.downsamplers = None
598
+
599
+ def forward(self, hidden_states, temb=None, num_frames=1):
600
+ output_states = ()
601
+
602
+ for resnet, temp_conv in zip(self.resnets, self.temp_convs):
603
+ if self.gradient_checkpointing:
604
+ hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
605
+ else:
606
+ hidden_states = resnet(hidden_states, temb)
607
+
608
+ if num_frames > 1:
609
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
610
+
611
+ output_states += (hidden_states,)
612
+
613
+ if self.downsamplers is not None:
614
+ for downsampler in self.downsamplers:
615
+ hidden_states = downsampler(hidden_states)
616
+
617
+ output_states += (hidden_states,)
618
+
619
+ return hidden_states, output_states
620
+
621
+
622
+ class CrossAttnUpBlock3D(nn.Module):
623
+ def __init__(
624
+ self,
625
+ in_channels: int,
626
+ out_channels: int,
627
+ prev_output_channel: int,
628
+ temb_channels: int,
629
+ dropout: float = 0.0,
630
+ num_layers: int = 1,
631
+ resnet_eps: float = 1e-6,
632
+ resnet_time_scale_shift: str = "default",
633
+ resnet_act_fn: str = "swish",
634
+ resnet_groups: int = 32,
635
+ resnet_pre_norm: bool = True,
636
+ attn_num_head_channels=1,
637
+ cross_attention_dim=1280,
638
+ output_scale_factor=1.0,
639
+ add_upsample=True,
640
+ dual_cross_attention=False,
641
+ use_linear_projection=False,
642
+ only_cross_attention=False,
643
+ upcast_attention=False,
644
+ ):
645
+ super().__init__()
646
+ resnets = []
647
+ temp_convs = []
648
+ attentions = []
649
+ temp_attentions = []
650
+
651
+ self.gradient_checkpointing = False
652
+ self.has_cross_attention = True
653
+ self.attn_num_head_channels = attn_num_head_channels
654
+
655
+ for i in range(num_layers):
656
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
657
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
658
+
659
+ resnets.append(
660
+ ResnetBlock2D(
661
+ in_channels=resnet_in_channels + res_skip_channels,
662
+ out_channels=out_channels,
663
+ temb_channels=temb_channels,
664
+ eps=resnet_eps,
665
+ groups=resnet_groups,
666
+ dropout=dropout,
667
+ time_embedding_norm=resnet_time_scale_shift,
668
+ non_linearity=resnet_act_fn,
669
+ output_scale_factor=output_scale_factor,
670
+ pre_norm=resnet_pre_norm,
671
+ )
672
+ )
673
+ temp_convs.append(
674
+ TemporalConvLayer(
675
+ out_channels,
676
+ out_channels,
677
+ dropout=0.1
678
+ )
679
+ )
680
+ attentions.append(
681
+ Transformer2DModel(
682
+ out_channels // attn_num_head_channels,
683
+ attn_num_head_channels,
684
+ in_channels=out_channels,
685
+ num_layers=1,
686
+ cross_attention_dim=cross_attention_dim,
687
+ norm_num_groups=resnet_groups,
688
+ use_linear_projection=use_linear_projection,
689
+ only_cross_attention=only_cross_attention,
690
+ upcast_attention=upcast_attention,
691
+ )
692
+ )
693
+ temp_attentions.append(
694
+ TransformerTemporalModel(
695
+ out_channels // attn_num_head_channels,
696
+ attn_num_head_channels,
697
+ in_channels=out_channels,
698
+ num_layers=1,
699
+ cross_attention_dim=cross_attention_dim,
700
+ norm_num_groups=resnet_groups,
701
+ )
702
+ )
703
+ self.resnets = nn.ModuleList(resnets)
704
+ self.temp_convs = nn.ModuleList(temp_convs)
705
+ self.attentions = nn.ModuleList(attentions)
706
+ self.temp_attentions = nn.ModuleList(temp_attentions)
707
+
708
+ if add_upsample:
709
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
710
+ else:
711
+ self.upsamplers = None
712
+
713
+ def forward(
714
+ self,
715
+ hidden_states,
716
+ res_hidden_states_tuple,
717
+ temb=None,
718
+ encoder_hidden_states=None,
719
+ upsample_size=None,
720
+ attention_mask=None,
721
+ num_frames=1,
722
+ cross_attention_kwargs=None,
723
+ ):
724
+ # TODO(Patrick, William) - attention mask is not used
725
+ for resnet, temp_conv, attn, temp_attn in zip(
726
+ self.resnets, self.temp_convs, self.attentions, self.temp_attentions
727
+ ):
728
+ # pop res hidden states
729
+ res_hidden_states = res_hidden_states_tuple[-1]
730
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
731
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
732
+
733
+ if self.gradient_checkpointing:
734
+ hidden_states = cross_attn_g_c(
735
+ attn,
736
+ temp_attn,
737
+ resnet,
738
+ temp_conv,
739
+ hidden_states,
740
+ encoder_hidden_states,
741
+ cross_attention_kwargs,
742
+ temb,
743
+ num_frames,
744
+ inverse_temp=True
745
+ )
746
+ else:
747
+ hidden_states = resnet(hidden_states, temb)
748
+
749
+ if num_frames > 1:
750
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
751
+
752
+ hidden_states = attn(
753
+ hidden_states,
754
+ encoder_hidden_states=encoder_hidden_states,
755
+ cross_attention_kwargs=cross_attention_kwargs,
756
+ ).sample
757
+
758
+ if num_frames > 1:
759
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
760
+
761
+ if self.upsamplers is not None:
762
+ for upsampler in self.upsamplers:
763
+ hidden_states = upsampler(hidden_states, upsample_size)
764
+
765
+ return hidden_states
766
+
767
+
768
+ class UpBlock3D(nn.Module):
769
+ def __init__(
770
+ self,
771
+ in_channels: int,
772
+ prev_output_channel: int,
773
+ out_channels: int,
774
+ temb_channels: int,
775
+ dropout: float = 0.0,
776
+ num_layers: int = 1,
777
+ resnet_eps: float = 1e-6,
778
+ resnet_time_scale_shift: str = "default",
779
+ resnet_act_fn: str = "swish",
780
+ resnet_groups: int = 32,
781
+ resnet_pre_norm: bool = True,
782
+ output_scale_factor=1.0,
783
+ add_upsample=True,
784
+ ):
785
+ super().__init__()
786
+ resnets = []
787
+ temp_convs = []
788
+ self.gradient_checkpointing = False
789
+ for i in range(num_layers):
790
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
791
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
792
+
793
+ resnets.append(
794
+ ResnetBlock2D(
795
+ in_channels=resnet_in_channels + res_skip_channels,
796
+ out_channels=out_channels,
797
+ temb_channels=temb_channels,
798
+ eps=resnet_eps,
799
+ groups=resnet_groups,
800
+ dropout=dropout,
801
+ time_embedding_norm=resnet_time_scale_shift,
802
+ non_linearity=resnet_act_fn,
803
+ output_scale_factor=output_scale_factor,
804
+ pre_norm=resnet_pre_norm,
805
+ )
806
+ )
807
+ temp_convs.append(
808
+ TemporalConvLayer(
809
+ out_channels,
810
+ out_channels,
811
+ dropout=0.1
812
+ )
813
+ )
814
+
815
+ self.resnets = nn.ModuleList(resnets)
816
+ self.temp_convs = nn.ModuleList(temp_convs)
817
+
818
+ if add_upsample:
819
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
820
+ else:
821
+ self.upsamplers = None
822
+
823
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
824
+ for resnet, temp_conv in zip(self.resnets, self.temp_convs):
825
+ # pop res hidden states
826
+ res_hidden_states = res_hidden_states_tuple[-1]
827
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
828
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
829
+
830
+ if self.gradient_checkpointing:
831
+ hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
832
+ else:
833
+ hidden_states = resnet(hidden_states, temb)
834
+
835
+ if num_frames > 1:
836
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
837
+
838
+ if self.upsamplers is not None:
839
+ for upsampler in self.upsamplers:
840
+ hidden_states = upsampler(hidden_states, upsample_size)
841
+
842
+ return hidden_states
unet_3d_condition.py ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
2
+ # Copyright 2023 The ModelScope Team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from dataclasses import dataclass
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.utils.checkpoint
21
+
22
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
23
+ from diffusers.utils import BaseOutput, logging
24
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
25
+ from diffusers.models.modeling_utils import ModelMixin
26
+ from diffusers.models.transformer_temporal import TransformerTemporalModel
27
+ from .unet_3d_blocks import (
28
+ CrossAttnDownBlock3D,
29
+ CrossAttnUpBlock3D,
30
+ DownBlock3D,
31
+ UNetMidBlock3DCrossAttn,
32
+ UpBlock3D,
33
+ get_down_block,
34
+ get_up_block,
35
+ transformer_g_c
36
+ )
37
+
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+
42
+ @dataclass
43
+ class UNet3DConditionOutput(BaseOutput):
44
+ """
45
+ Args:
46
+ sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
47
+ Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
48
+ """
49
+
50
+ sample: torch.FloatTensor
51
+
52
+
53
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
54
+ r"""
55
+ UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
56
+ and returns sample shaped output.
57
+
58
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
+ implements for all the models (such as downloading or saving, etc.)
60
+
61
+ Parameters:
62
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
63
+ Height and width of input/output sample.
64
+ in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
65
+ out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
66
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
67
+ The tuple of downsample blocks to use.
68
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
69
+ The tuple of upsample blocks to use.
70
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
71
+ The tuple of output channels for each block.
72
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
73
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
74
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
75
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
76
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
77
+ If `None`, it will skip the normalization and activation layers in post-processing
78
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
79
+ cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
80
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
81
+ """
82
+
83
+ _supports_gradient_checkpointing = True
84
+
85
+ @register_to_config
86
+ def __init__(
87
+ self,
88
+ sample_size: Optional[int] = None,
89
+ in_channels: int = 4,
90
+ out_channels: int = 4,
91
+ down_block_types: Tuple[str] = (
92
+ "CrossAttnDownBlock3D",
93
+ "CrossAttnDownBlock3D",
94
+ "CrossAttnDownBlock3D",
95
+ "DownBlock3D",
96
+ ),
97
+ up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
98
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
99
+ layers_per_block: int = 2,
100
+ downsample_padding: int = 1,
101
+ mid_block_scale_factor: float = 1,
102
+ act_fn: str = "silu",
103
+ norm_num_groups: Optional[int] = 32,
104
+ norm_eps: float = 1e-5,
105
+ cross_attention_dim: int = 1024,
106
+ attention_head_dim: Union[int, Tuple[int]] = 64,
107
+ ):
108
+ super().__init__()
109
+
110
+ self.sample_size = sample_size
111
+ self.gradient_checkpointing = False
112
+ # Check inputs
113
+ if len(down_block_types) != len(up_block_types):
114
+ raise ValueError(
115
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
116
+ )
117
+
118
+ if len(block_out_channels) != len(down_block_types):
119
+ raise ValueError(
120
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
121
+ )
122
+
123
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
124
+ raise ValueError(
125
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
126
+ )
127
+
128
+ # input
129
+ conv_in_kernel = 3
130
+ conv_out_kernel = 3
131
+ conv_in_padding = (conv_in_kernel - 1) // 2
132
+ self.conv_in = nn.Conv2d(
133
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
134
+ )
135
+
136
+ # time
137
+ time_embed_dim = block_out_channels[0] * 4
138
+ self.time_proj = Timesteps(block_out_channels[0], True, 0)
139
+ timestep_input_dim = block_out_channels[0]
140
+
141
+ self.time_embedding = TimestepEmbedding(
142
+ timestep_input_dim,
143
+ time_embed_dim,
144
+ act_fn=act_fn,
145
+ )
146
+
147
+ self.transformer_in = TransformerTemporalModel(
148
+ num_attention_heads=8,
149
+ attention_head_dim=attention_head_dim,
150
+ in_channels=block_out_channels[0],
151
+ num_layers=1,
152
+ )
153
+
154
+ # class embedding
155
+ self.down_blocks = nn.ModuleList([])
156
+ self.up_blocks = nn.ModuleList([])
157
+
158
+ if isinstance(attention_head_dim, int):
159
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
160
+
161
+ # down
162
+ output_channel = block_out_channels[0]
163
+ for i, down_block_type in enumerate(down_block_types):
164
+ input_channel = output_channel
165
+ output_channel = block_out_channels[i]
166
+ is_final_block = i == len(block_out_channels) - 1
167
+
168
+ down_block = get_down_block(
169
+ down_block_type,
170
+ num_layers=layers_per_block,
171
+ in_channels=input_channel,
172
+ out_channels=output_channel,
173
+ temb_channels=time_embed_dim,
174
+ add_downsample=not is_final_block,
175
+ resnet_eps=norm_eps,
176
+ resnet_act_fn=act_fn,
177
+ resnet_groups=norm_num_groups,
178
+ cross_attention_dim=cross_attention_dim,
179
+ attn_num_head_channels=attention_head_dim[i],
180
+ downsample_padding=downsample_padding,
181
+ dual_cross_attention=False,
182
+ )
183
+ self.down_blocks.append(down_block)
184
+
185
+ # mid
186
+ self.mid_block = UNetMidBlock3DCrossAttn(
187
+ in_channels=block_out_channels[-1],
188
+ temb_channels=time_embed_dim,
189
+ resnet_eps=norm_eps,
190
+ resnet_act_fn=act_fn,
191
+ output_scale_factor=mid_block_scale_factor,
192
+ cross_attention_dim=cross_attention_dim,
193
+ attn_num_head_channels=attention_head_dim[-1],
194
+ resnet_groups=norm_num_groups,
195
+ dual_cross_attention=False,
196
+ )
197
+
198
+ # count how many layers upsample the images
199
+ self.num_upsamplers = 0
200
+
201
+ # up
202
+ reversed_block_out_channels = list(reversed(block_out_channels))
203
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
204
+
205
+ output_channel = reversed_block_out_channels[0]
206
+ for i, up_block_type in enumerate(up_block_types):
207
+ is_final_block = i == len(block_out_channels) - 1
208
+
209
+ prev_output_channel = output_channel
210
+ output_channel = reversed_block_out_channels[i]
211
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
212
+
213
+ # add upsample block for all BUT final layer
214
+ if not is_final_block:
215
+ add_upsample = True
216
+ self.num_upsamplers += 1
217
+ else:
218
+ add_upsample = False
219
+
220
+ up_block = get_up_block(
221
+ up_block_type,
222
+ num_layers=layers_per_block + 1,
223
+ in_channels=input_channel,
224
+ out_channels=output_channel,
225
+ prev_output_channel=prev_output_channel,
226
+ temb_channels=time_embed_dim,
227
+ add_upsample=add_upsample,
228
+ resnet_eps=norm_eps,
229
+ resnet_act_fn=act_fn,
230
+ resnet_groups=norm_num_groups,
231
+ cross_attention_dim=cross_attention_dim,
232
+ attn_num_head_channels=reversed_attention_head_dim[i],
233
+ dual_cross_attention=False,
234
+ )
235
+ self.up_blocks.append(up_block)
236
+ prev_output_channel = output_channel
237
+
238
+ # out
239
+ if norm_num_groups is not None:
240
+ self.conv_norm_out = nn.GroupNorm(
241
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
242
+ )
243
+ self.conv_act = nn.SiLU()
244
+ else:
245
+ self.conv_norm_out = None
246
+ self.conv_act = None
247
+
248
+ conv_out_padding = (conv_out_kernel - 1) // 2
249
+ self.conv_out = nn.Conv2d(
250
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
251
+ )
252
+
253
+ def set_attention_slice(self, slice_size):
254
+ r"""
255
+ Enable sliced attention computation.
256
+
257
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
258
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
259
+
260
+ Args:
261
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
262
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
263
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
264
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
265
+ must be a multiple of `slice_size`.
266
+ """
267
+ sliceable_head_dims = []
268
+
269
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
270
+ if hasattr(module, "set_attention_slice"):
271
+ sliceable_head_dims.append(module.sliceable_head_dim)
272
+
273
+ for child in module.children():
274
+ fn_recursive_retrieve_slicable_dims(child)
275
+
276
+ # retrieve number of attention layers
277
+ for module in self.children():
278
+ fn_recursive_retrieve_slicable_dims(module)
279
+
280
+ num_slicable_layers = len(sliceable_head_dims)
281
+
282
+ if slice_size == "auto":
283
+ # half the attention head size is usually a good trade-off between
284
+ # speed and memory
285
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
286
+ elif slice_size == "max":
287
+ # make smallest slice possible
288
+ slice_size = num_slicable_layers * [1]
289
+
290
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
291
+
292
+ if len(slice_size) != len(sliceable_head_dims):
293
+ raise ValueError(
294
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
295
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
296
+ )
297
+
298
+ for i in range(len(slice_size)):
299
+ size = slice_size[i]
300
+ dim = sliceable_head_dims[i]
301
+ if size is not None and size > dim:
302
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
303
+
304
+ # Recursively walk through all the children.
305
+ # Any children which exposes the set_attention_slice method
306
+ # gets the message
307
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
308
+ if hasattr(module, "set_attention_slice"):
309
+ module.set_attention_slice(slice_size.pop())
310
+
311
+ for child in module.children():
312
+ fn_recursive_set_attention_slice(child, slice_size)
313
+
314
+ reversed_slice_size = list(reversed(slice_size))
315
+ for module in self.children():
316
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
317
+
318
+ def _set_gradient_checkpointing(self, value=False):
319
+ self.gradient_checkpointing = value
320
+ self.mid_block.gradient_checkpointing = value
321
+ for module in self.down_blocks + self.up_blocks:
322
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
323
+ module.gradient_checkpointing = value
324
+
325
+ def forward(
326
+ self,
327
+ sample: torch.FloatTensor,
328
+ timestep: Union[torch.Tensor, float, int],
329
+ encoder_hidden_states: torch.Tensor,
330
+ class_labels: Optional[torch.Tensor] = None,
331
+ timestep_cond: Optional[torch.Tensor] = None,
332
+ attention_mask: Optional[torch.Tensor] = None,
333
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
334
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
335
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
336
+ return_dict: bool = True,
337
+ ) -> Union[UNet3DConditionOutput, Tuple]:
338
+ r"""
339
+ Args:
340
+ sample (`torch.FloatTensor`): (batch, num_frames, channel, height, width) noisy inputs tensor
341
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
342
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
343
+ return_dict (`bool`, *optional*, defaults to `True`):
344
+ Whether or not to return a [`models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain tuple.
345
+ cross_attention_kwargs (`dict`, *optional*):
346
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
347
+ `self.processor` in
348
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
349
+
350
+ Returns:
351
+ [`~models.unet_2d_condition.UNet3DConditionOutput`] or `tuple`:
352
+ [`~models.unet_2d_condition.UNet3DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
353
+ returning a tuple, the first element is the sample tensor.
354
+ """
355
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
356
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
357
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
358
+ # on the fly if necessary.
359
+ default_overall_up_factor = 2**self.num_upsamplers
360
+
361
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
362
+ forward_upsample_size = False
363
+ upsample_size = None
364
+
365
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
366
+ logger.info("Forward upsample size to force interpolation output size.")
367
+ forward_upsample_size = True
368
+
369
+ # prepare attention_mask
370
+ if attention_mask is not None:
371
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
372
+ attention_mask = attention_mask.unsqueeze(1)
373
+
374
+ # 1. time
375
+ timesteps = timestep
376
+ if not torch.is_tensor(timesteps):
377
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
378
+ # This would be a good case for the `match` statement (Python 3.10+)
379
+ is_mps = sample.device.type == "mps"
380
+ if isinstance(timestep, float):
381
+ dtype = torch.float32 if is_mps else torch.float64
382
+ else:
383
+ dtype = torch.int32 if is_mps else torch.int64
384
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
385
+ elif len(timesteps.shape) == 0:
386
+ timesteps = timesteps[None].to(sample.device)
387
+
388
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
389
+ num_frames = sample.shape[2]
390
+ timesteps = timesteps.expand(sample.shape[0])
391
+
392
+ t_emb = self.time_proj(timesteps)
393
+
394
+ # timesteps does not contain any weights and will always return f32 tensors
395
+ # but time_embedding might actually be running in fp16. so we need to cast here.
396
+ # there might be better ways to encapsulate this.
397
+ t_emb = t_emb.to(dtype=self.dtype)
398
+
399
+ emb = self.time_embedding(t_emb, timestep_cond)
400
+ emb = emb.repeat_interleave(repeats=num_frames, dim=0)
401
+ encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
402
+
403
+ # 2. pre-process
404
+ sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
405
+ sample = self.conv_in(sample)
406
+
407
+ if num_frames > 1:
408
+ if self.gradient_checkpointing:
409
+ sample = transformer_g_c(self.transformer_in, sample, num_frames)
410
+ else:
411
+ sample = self.transformer_in(sample, num_frames=num_frames).sample
412
+
413
+ # 3. down
414
+ down_block_res_samples = (sample,)
415
+ for downsample_block in self.down_blocks:
416
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
417
+ sample, res_samples = downsample_block(
418
+ hidden_states=sample,
419
+ temb=emb,
420
+ encoder_hidden_states=encoder_hidden_states,
421
+ attention_mask=attention_mask,
422
+ num_frames=num_frames,
423
+ cross_attention_kwargs=cross_attention_kwargs,
424
+ )
425
+ else:
426
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
427
+
428
+ down_block_res_samples += res_samples
429
+
430
+ if down_block_additional_residuals is not None:
431
+ new_down_block_res_samples = ()
432
+
433
+ for down_block_res_sample, down_block_additional_residual in zip(
434
+ down_block_res_samples, down_block_additional_residuals
435
+ ):
436
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
437
+ new_down_block_res_samples += (down_block_res_sample,)
438
+
439
+ down_block_res_samples = new_down_block_res_samples
440
+
441
+ # 4. mid
442
+ if self.mid_block is not None:
443
+ sample = self.mid_block(
444
+ sample,
445
+ emb,
446
+ encoder_hidden_states=encoder_hidden_states,
447
+ attention_mask=attention_mask,
448
+ num_frames=num_frames,
449
+ cross_attention_kwargs=cross_attention_kwargs,
450
+ )
451
+
452
+ if mid_block_additional_residual is not None:
453
+ sample = sample + mid_block_additional_residual
454
+
455
+ # 5. up
456
+ for i, upsample_block in enumerate(self.up_blocks):
457
+ is_final_block = i == len(self.up_blocks) - 1
458
+
459
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
460
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
461
+
462
+ # if we have not reached the final block and need to forward the
463
+ # upsample size, we do it here
464
+ if not is_final_block and forward_upsample_size:
465
+ upsample_size = down_block_res_samples[-1].shape[2:]
466
+
467
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
468
+ sample = upsample_block(
469
+ hidden_states=sample,
470
+ temb=emb,
471
+ res_hidden_states_tuple=res_samples,
472
+ encoder_hidden_states=encoder_hidden_states,
473
+ upsample_size=upsample_size,
474
+ attention_mask=attention_mask,
475
+ num_frames=num_frames,
476
+ cross_attention_kwargs=cross_attention_kwargs,
477
+ )
478
+ else:
479
+ sample = upsample_block(
480
+ hidden_states=sample,
481
+ temb=emb,
482
+ res_hidden_states_tuple=res_samples,
483
+ upsample_size=upsample_size,
484
+ num_frames=num_frames,
485
+ )
486
+
487
+ # 6. post-process
488
+ if self.conv_norm_out:
489
+ sample = self.conv_norm_out(sample)
490
+ sample = self.conv_act(sample)
491
+
492
+ sample = self.conv_out(sample)
493
+
494
+ # reshape to (batch, channel, framerate, width, height)
495
+ sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
496
+
497
+ if not return_dict:
498
+ return (sample,)
499
+
500
+ return UNet3DConditionOutput(sample=sample)
zeroscope_v2_576w/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
zeroscope_v2_576w/README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-to-video
3
+ license: cc-by-nc-4.0
4
+ ---
5
+
6
+ ![model example](https://i.imgur.com/1mrNnh8.png)
7
+
8
+ # zeroscope_v2 576w
9
+ A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output. This model was trained from the [original weights](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis) using 9,923 clips and 29,769 tagged frames at 24 frames, 576x320 resolution.<br />
10
+ zeroscope_v2_567w is specifically designed for upscaling with [zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) using vid2vid in the [1111 text2video](https://github.com/kabachuha/sd-webui-text2video) extension by [kabachuha](https://github.com/kabachuha). Leveraging this model as a preliminary step allows for superior overall compositions at higher resolutions in zeroscope_v2_XL, permitting faster exploration in 576x320 before transitioning to a high-resolution render. See some [example outputs](https://www.youtube.com/watch?v=HO3APT_0UA4) that have been upscaled to 1024x576 using zeroscope_v2_XL. (courtesy of [dotsimulate](https://www.instagram.com/dotsimulate/))<br />
11
+
12
+ zeroscope_v2_576w uses 7.9gb of vram when rendering 30 frames at 576x320
13
+
14
+ ### Using it with the 1111 text2video extension
15
+
16
+ 1. Download files in the zs2_576w folder.
17
+ 2. Replace the respective files in the 'stable-diffusion-webui\models\ModelScope\t2v' directory.
18
+
19
+ ### Upscaling recommendations
20
+
21
+ For upscaling, it's recommended to use [zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) via vid2vid in the 1111 extension. It works best at 1024x576 with a denoise strength between 0.66 and 0.85. Remember to use the same prompt that was used to generate the original clip. <br />
22
+
23
+ ### Usage in 🧨 Diffusers
24
+
25
+ Let's first install the libraries required:
26
+
27
+ ```bash
28
+ $ pip install diffusers transformers accelerate torch
29
+ ```
30
+
31
+ Now, generate a video:
32
+
33
+ ```py
34
+ import torch
35
+ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
36
+ from diffusers.utils import export_to_video
37
+
38
+ pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
39
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
40
+ pipe.enable_model_cpu_offload()
41
+
42
+ prompt = "Darth Vader is surfing on waves"
43
+ video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
44
+ video_path = export_to_video(video_frames)
45
+ ```
46
+
47
+ Here are some results:
48
+
49
+ <table>
50
+ <tr>
51
+ Darth vader is surfing on waves.
52
+ <br>
53
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/darthvader_cerpense.gif"
54
+ alt="Darth vader surfing in waves."
55
+ style="width: 576;" />
56
+ </center></td>
57
+ </tr>
58
+ </table>
59
+
60
+ ### Known issues
61
+
62
+ Lower resolutions or fewer frames could lead to suboptimal output. <br />
63
+
64
+ Thanks to [camenduru](https://github.com/camenduru), [kabachuha](https://github.com/kabachuha), [ExponentialML](https://github.com/ExponentialML), [dotsimulate](https://www.instagram.com/dotsimulate/), [VANYA](https://twitter.com/veryVANYA), [polyware](https://twitter.com/polyware_ai), [tin2tin](https://github.com/tin2tin)<br />
zeroscope_v2_576w/model_index.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "TextToVideoSDPipeline",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "scheduler": [
5
+ "diffusers",
6
+ "DDIMScheduler"
7
+ ],
8
+ "text_encoder": [
9
+ "transformers",
10
+ "CLIPTextModel"
11
+ ],
12
+ "tokenizer": [
13
+ "transformers",
14
+ "CLIPTokenizer"
15
+ ],
16
+ "unet": [
17
+ "diffusers",
18
+ "UNet3DConditionModel"
19
+ ],
20
+ "vae": [
21
+ "diffusers",
22
+ "AutoencoderKL"
23
+ ]
24
+ }
zeroscope_v2_576w/scheduler/scheduler_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "clip_sample_range": 1.0,
9
+ "dynamic_thresholding_ratio": 0.995,
10
+ "num_train_timesteps": 1000,
11
+ "prediction_type": "epsilon",
12
+ "sample_max_value": 1.0,
13
+ "set_alpha_to_one": false,
14
+ "skip_prk_steps": true,
15
+ "steps_offset": 1,
16
+ "thresholding": false,
17
+ "trained_betas": null
18
+ }
zeroscope_v2_576w/text_encoder/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./models/model_scope_diffusers/",
3
+ "architectures": [
4
+ "CLIPTextModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 1024,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 23,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 512,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.29.2",
24
+ "vocab_size": 49408
25
+ }
zeroscope_v2_576w/text_encoder/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76877281ed10a4a71f6c2aa0edd286a9e5e23a852a05d13fb05965b464a305bb
3
+ size 680904225
zeroscope_v2_576w/tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
zeroscope_v2_576w/tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "!",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
zeroscope_v2_576w/tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "do_lower_case": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 77,
23
+ "pad_token": "<|endoftext|>",
24
+ "tokenizer_class": "CLIPTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
zeroscope_v2_576w/tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zeroscope_v2_576w/unet/config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet3DConditionModel",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "_name_or_path": "./models/model_scope_diffusers/",
5
+ "act_fn": "silu",
6
+ "attention_head_dim": 64,
7
+ "block_out_channels": [
8
+ 320,
9
+ 640,
10
+ 1280,
11
+ 1280
12
+ ],
13
+ "cross_attention_dim": 1024,
14
+ "down_block_types": [
15
+ "CrossAttnDownBlock3D",
16
+ "CrossAttnDownBlock3D",
17
+ "CrossAttnDownBlock3D",
18
+ "DownBlock3D"
19
+ ],
20
+ "downsample_padding": 1,
21
+ "in_channels": 4,
22
+ "layers_per_block": 2,
23
+ "mid_block_scale_factor": 1,
24
+ "norm_eps": 1e-05,
25
+ "norm_num_groups": 32,
26
+ "out_channels": 4,
27
+ "sample_size": 32,
28
+ "up_block_types": [
29
+ "UpBlock3D",
30
+ "CrossAttnUpBlock3D",
31
+ "CrossAttnUpBlock3D",
32
+ "CrossAttnUpBlock3D"
33
+ ]
34
+ }
zeroscope_v2_576w/unet/diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42b51ea486109b7479366e01aae7e267a81bb750c13eb5c6b765a3d5bc7987c9
3
+ size 2823110385
zeroscope_v2_576w/vae/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "_name_or_path": "./models/model_scope_diffusers/",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "in_channels": 3,
19
+ "latent_channels": 4,
20
+ "layers_per_block": 2,
21
+ "norm_num_groups": 32,
22
+ "out_channels": 3,
23
+ "sample_size": 512,
24
+ "scaling_factor": 0.18215,
25
+ "up_block_types": [
26
+ "UpDecoderBlock2D",
27
+ "UpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D"
30
+ ]
31
+ }
zeroscope_v2_576w/vae/diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b0d11ff25d00ceaa02f602831d9cfe650509fdc850c0a1bcb2acdfa03bd5d56
3
+ size 167407857