thanks to showlab ❤
Browse files- __pycache__/unet_3d_blocks.cpython-310.pyc +0 -0
- __pycache__/unet_3d_condition.cpython-310.pyc +0 -0
- unet_3d_blocks.py +842 -0
- unet_3d_condition.py +500 -0
- zeroscope_v2_576w/.gitattributes +35 -0
- zeroscope_v2_576w/README.md +64 -0
- zeroscope_v2_576w/model_index.json +24 -0
- zeroscope_v2_576w/scheduler/scheduler_config.json +18 -0
- zeroscope_v2_576w/text_encoder/config.json +25 -0
- zeroscope_v2_576w/text_encoder/pytorch_model.bin +3 -0
- zeroscope_v2_576w/tokenizer/merges.txt +0 -0
- zeroscope_v2_576w/tokenizer/special_tokens_map.json +24 -0
- zeroscope_v2_576w/tokenizer/tokenizer_config.json +33 -0
- zeroscope_v2_576w/tokenizer/vocab.json +0 -0
- zeroscope_v2_576w/unet/config.json +34 -0
- zeroscope_v2_576w/unet/diffusion_pytorch_model.bin +3 -0
- zeroscope_v2_576w/vae/config.json +31 -0
- zeroscope_v2_576w/vae/diffusion_pytorch_model.bin +3 -0
__pycache__/unet_3d_blocks.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
__pycache__/unet_3d_condition.cpython-310.pyc
ADDED
Binary file (13.8 kB). View file
|
|
unet_3d_blocks.py
ADDED
@@ -0,0 +1,842 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.checkpoint as checkpoint
|
17 |
+
from torch import nn
|
18 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
|
19 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
20 |
+
from diffusers.models.transformer_temporal import TransformerTemporalModel
|
21 |
+
|
22 |
+
# Assign gradient checkpoint function to simple variable for readability.
|
23 |
+
g_c = checkpoint.checkpoint
|
24 |
+
|
25 |
+
def use_temporal(module, num_frames, x):
|
26 |
+
if num_frames == 1:
|
27 |
+
if isinstance(module, TransformerTemporalModel):
|
28 |
+
return {"sample": x}
|
29 |
+
else:
|
30 |
+
return x
|
31 |
+
|
32 |
+
def custom_checkpoint(module, mode=None):
|
33 |
+
if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.')
|
34 |
+
custom_forward = None
|
35 |
+
|
36 |
+
if mode == 'resnet':
|
37 |
+
def custom_forward(hidden_states, temb):
|
38 |
+
inputs = module(hidden_states, temb)
|
39 |
+
return inputs
|
40 |
+
|
41 |
+
if mode == 'attn':
|
42 |
+
def custom_forward(
|
43 |
+
hidden_states,
|
44 |
+
encoder_hidden_states=None,
|
45 |
+
cross_attention_kwargs=None
|
46 |
+
):
|
47 |
+
inputs = module(
|
48 |
+
hidden_states,
|
49 |
+
encoder_hidden_states,
|
50 |
+
cross_attention_kwargs
|
51 |
+
)
|
52 |
+
return inputs
|
53 |
+
|
54 |
+
if mode == 'temp':
|
55 |
+
def custom_forward(hidden_states, num_frames=None):
|
56 |
+
inputs = use_temporal(module, num_frames, hidden_states)
|
57 |
+
if inputs is None: inputs = module(
|
58 |
+
hidden_states,
|
59 |
+
num_frames=num_frames
|
60 |
+
)
|
61 |
+
return inputs
|
62 |
+
|
63 |
+
return custom_forward
|
64 |
+
|
65 |
+
def transformer_g_c(transformer, sample, num_frames):
|
66 |
+
sample = g_c(custom_checkpoint(transformer, mode='temp'),
|
67 |
+
sample, num_frames, use_reentrant=False
|
68 |
+
)['sample']
|
69 |
+
|
70 |
+
return sample
|
71 |
+
|
72 |
+
def cross_attn_g_c(
|
73 |
+
attn,
|
74 |
+
temp_attn,
|
75 |
+
resnet,
|
76 |
+
temp_conv,
|
77 |
+
hidden_states,
|
78 |
+
encoder_hidden_states,
|
79 |
+
cross_attention_kwargs,
|
80 |
+
temb,
|
81 |
+
num_frames,
|
82 |
+
inverse_temp=False
|
83 |
+
):
|
84 |
+
|
85 |
+
def ordered_g_c(idx):
|
86 |
+
|
87 |
+
# Self and CrossAttention
|
88 |
+
if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'),
|
89 |
+
hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False
|
90 |
+
)['sample']
|
91 |
+
|
92 |
+
# Temporal Self and CrossAttention
|
93 |
+
if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'),
|
94 |
+
hidden_states, num_frames, use_reentrant=False)['sample']
|
95 |
+
|
96 |
+
# Resnets
|
97 |
+
if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'),
|
98 |
+
hidden_states, temb, use_reentrant=False)
|
99 |
+
|
100 |
+
# Temporal Convolutions
|
101 |
+
if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'),
|
102 |
+
hidden_states, num_frames, use_reentrant=False
|
103 |
+
)
|
104 |
+
|
105 |
+
# Here we call the function depending on the order in which they are called.
|
106 |
+
# For some layers, the orders are different, so we access the appropriate one by index.
|
107 |
+
|
108 |
+
if not inverse_temp:
|
109 |
+
for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx)
|
110 |
+
else:
|
111 |
+
for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx)
|
112 |
+
|
113 |
+
return hidden_states
|
114 |
+
|
115 |
+
def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames):
|
116 |
+
hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False)
|
117 |
+
hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'),
|
118 |
+
hidden_states, num_frames, use_reentrant=False
|
119 |
+
)
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
+
def get_down_block(
|
123 |
+
down_block_type,
|
124 |
+
num_layers,
|
125 |
+
in_channels,
|
126 |
+
out_channels,
|
127 |
+
temb_channels,
|
128 |
+
add_downsample,
|
129 |
+
resnet_eps,
|
130 |
+
resnet_act_fn,
|
131 |
+
attn_num_head_channels,
|
132 |
+
resnet_groups=None,
|
133 |
+
cross_attention_dim=None,
|
134 |
+
downsample_padding=None,
|
135 |
+
dual_cross_attention=False,
|
136 |
+
use_linear_projection=True,
|
137 |
+
only_cross_attention=False,
|
138 |
+
upcast_attention=False,
|
139 |
+
resnet_time_scale_shift="default",
|
140 |
+
):
|
141 |
+
if down_block_type == "DownBlock3D":
|
142 |
+
return DownBlock3D(
|
143 |
+
num_layers=num_layers,
|
144 |
+
in_channels=in_channels,
|
145 |
+
out_channels=out_channels,
|
146 |
+
temb_channels=temb_channels,
|
147 |
+
add_downsample=add_downsample,
|
148 |
+
resnet_eps=resnet_eps,
|
149 |
+
resnet_act_fn=resnet_act_fn,
|
150 |
+
resnet_groups=resnet_groups,
|
151 |
+
downsample_padding=downsample_padding,
|
152 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
153 |
+
)
|
154 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
155 |
+
if cross_attention_dim is None:
|
156 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
157 |
+
return CrossAttnDownBlock3D(
|
158 |
+
num_layers=num_layers,
|
159 |
+
in_channels=in_channels,
|
160 |
+
out_channels=out_channels,
|
161 |
+
temb_channels=temb_channels,
|
162 |
+
add_downsample=add_downsample,
|
163 |
+
resnet_eps=resnet_eps,
|
164 |
+
resnet_act_fn=resnet_act_fn,
|
165 |
+
resnet_groups=resnet_groups,
|
166 |
+
downsample_padding=downsample_padding,
|
167 |
+
cross_attention_dim=cross_attention_dim,
|
168 |
+
attn_num_head_channels=attn_num_head_channels,
|
169 |
+
dual_cross_attention=dual_cross_attention,
|
170 |
+
use_linear_projection=use_linear_projection,
|
171 |
+
only_cross_attention=only_cross_attention,
|
172 |
+
upcast_attention=upcast_attention,
|
173 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
174 |
+
)
|
175 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
176 |
+
|
177 |
+
|
178 |
+
def get_up_block(
|
179 |
+
up_block_type,
|
180 |
+
num_layers,
|
181 |
+
in_channels,
|
182 |
+
out_channels,
|
183 |
+
prev_output_channel,
|
184 |
+
temb_channels,
|
185 |
+
add_upsample,
|
186 |
+
resnet_eps,
|
187 |
+
resnet_act_fn,
|
188 |
+
attn_num_head_channels,
|
189 |
+
resnet_groups=None,
|
190 |
+
cross_attention_dim=None,
|
191 |
+
dual_cross_attention=False,
|
192 |
+
use_linear_projection=True,
|
193 |
+
only_cross_attention=False,
|
194 |
+
upcast_attention=False,
|
195 |
+
resnet_time_scale_shift="default",
|
196 |
+
):
|
197 |
+
if up_block_type == "UpBlock3D":
|
198 |
+
return UpBlock3D(
|
199 |
+
num_layers=num_layers,
|
200 |
+
in_channels=in_channels,
|
201 |
+
out_channels=out_channels,
|
202 |
+
prev_output_channel=prev_output_channel,
|
203 |
+
temb_channels=temb_channels,
|
204 |
+
add_upsample=add_upsample,
|
205 |
+
resnet_eps=resnet_eps,
|
206 |
+
resnet_act_fn=resnet_act_fn,
|
207 |
+
resnet_groups=resnet_groups,
|
208 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
209 |
+
)
|
210 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
211 |
+
if cross_attention_dim is None:
|
212 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
213 |
+
return CrossAttnUpBlock3D(
|
214 |
+
num_layers=num_layers,
|
215 |
+
in_channels=in_channels,
|
216 |
+
out_channels=out_channels,
|
217 |
+
prev_output_channel=prev_output_channel,
|
218 |
+
temb_channels=temb_channels,
|
219 |
+
add_upsample=add_upsample,
|
220 |
+
resnet_eps=resnet_eps,
|
221 |
+
resnet_act_fn=resnet_act_fn,
|
222 |
+
resnet_groups=resnet_groups,
|
223 |
+
cross_attention_dim=cross_attention_dim,
|
224 |
+
attn_num_head_channels=attn_num_head_channels,
|
225 |
+
dual_cross_attention=dual_cross_attention,
|
226 |
+
use_linear_projection=use_linear_projection,
|
227 |
+
only_cross_attention=only_cross_attention,
|
228 |
+
upcast_attention=upcast_attention,
|
229 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
230 |
+
)
|
231 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
232 |
+
|
233 |
+
|
234 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
in_channels: int,
|
238 |
+
temb_channels: int,
|
239 |
+
dropout: float = 0.0,
|
240 |
+
num_layers: int = 1,
|
241 |
+
resnet_eps: float = 1e-6,
|
242 |
+
resnet_time_scale_shift: str = "default",
|
243 |
+
resnet_act_fn: str = "swish",
|
244 |
+
resnet_groups: int = 32,
|
245 |
+
resnet_pre_norm: bool = True,
|
246 |
+
attn_num_head_channels=1,
|
247 |
+
output_scale_factor=1.0,
|
248 |
+
cross_attention_dim=1280,
|
249 |
+
dual_cross_attention=False,
|
250 |
+
use_linear_projection=True,
|
251 |
+
upcast_attention=False,
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
self.gradient_checkpointing = False
|
256 |
+
self.has_cross_attention = True
|
257 |
+
self.attn_num_head_channels = attn_num_head_channels
|
258 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
259 |
+
|
260 |
+
# there is always at least one resnet
|
261 |
+
resnets = [
|
262 |
+
ResnetBlock2D(
|
263 |
+
in_channels=in_channels,
|
264 |
+
out_channels=in_channels,
|
265 |
+
temb_channels=temb_channels,
|
266 |
+
eps=resnet_eps,
|
267 |
+
groups=resnet_groups,
|
268 |
+
dropout=dropout,
|
269 |
+
time_embedding_norm=resnet_time_scale_shift,
|
270 |
+
non_linearity=resnet_act_fn,
|
271 |
+
output_scale_factor=output_scale_factor,
|
272 |
+
pre_norm=resnet_pre_norm,
|
273 |
+
)
|
274 |
+
]
|
275 |
+
temp_convs = [
|
276 |
+
TemporalConvLayer(
|
277 |
+
in_channels,
|
278 |
+
in_channels,
|
279 |
+
dropout=0.1
|
280 |
+
)
|
281 |
+
]
|
282 |
+
attentions = []
|
283 |
+
temp_attentions = []
|
284 |
+
|
285 |
+
for _ in range(num_layers):
|
286 |
+
attentions.append(
|
287 |
+
Transformer2DModel(
|
288 |
+
in_channels // attn_num_head_channels,
|
289 |
+
attn_num_head_channels,
|
290 |
+
in_channels=in_channels,
|
291 |
+
num_layers=1,
|
292 |
+
cross_attention_dim=cross_attention_dim,
|
293 |
+
norm_num_groups=resnet_groups,
|
294 |
+
use_linear_projection=use_linear_projection,
|
295 |
+
upcast_attention=upcast_attention,
|
296 |
+
)
|
297 |
+
)
|
298 |
+
temp_attentions.append(
|
299 |
+
TransformerTemporalModel(
|
300 |
+
in_channels // attn_num_head_channels,
|
301 |
+
attn_num_head_channels,
|
302 |
+
in_channels=in_channels,
|
303 |
+
num_layers=1,
|
304 |
+
cross_attention_dim=cross_attention_dim,
|
305 |
+
norm_num_groups=resnet_groups,
|
306 |
+
)
|
307 |
+
)
|
308 |
+
resnets.append(
|
309 |
+
ResnetBlock2D(
|
310 |
+
in_channels=in_channels,
|
311 |
+
out_channels=in_channels,
|
312 |
+
temb_channels=temb_channels,
|
313 |
+
eps=resnet_eps,
|
314 |
+
groups=resnet_groups,
|
315 |
+
dropout=dropout,
|
316 |
+
time_embedding_norm=resnet_time_scale_shift,
|
317 |
+
non_linearity=resnet_act_fn,
|
318 |
+
output_scale_factor=output_scale_factor,
|
319 |
+
pre_norm=resnet_pre_norm,
|
320 |
+
)
|
321 |
+
)
|
322 |
+
temp_convs.append(
|
323 |
+
TemporalConvLayer(
|
324 |
+
in_channels,
|
325 |
+
in_channels,
|
326 |
+
dropout=0.1
|
327 |
+
)
|
328 |
+
)
|
329 |
+
|
330 |
+
self.resnets = nn.ModuleList(resnets)
|
331 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
332 |
+
self.attentions = nn.ModuleList(attentions)
|
333 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
hidden_states,
|
338 |
+
temb=None,
|
339 |
+
encoder_hidden_states=None,
|
340 |
+
attention_mask=None,
|
341 |
+
num_frames=1,
|
342 |
+
cross_attention_kwargs=None,
|
343 |
+
):
|
344 |
+
if self.gradient_checkpointing:
|
345 |
+
hidden_states = up_down_g_c(
|
346 |
+
self.resnets[0],
|
347 |
+
self.temp_convs[0],
|
348 |
+
hidden_states,
|
349 |
+
temb,
|
350 |
+
num_frames
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
354 |
+
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
|
355 |
+
|
356 |
+
for attn, temp_attn, resnet, temp_conv in zip(
|
357 |
+
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
|
358 |
+
):
|
359 |
+
if self.gradient_checkpointing:
|
360 |
+
hidden_states = cross_attn_g_c(
|
361 |
+
attn,
|
362 |
+
temp_attn,
|
363 |
+
resnet,
|
364 |
+
temp_conv,
|
365 |
+
hidden_states,
|
366 |
+
encoder_hidden_states,
|
367 |
+
cross_attention_kwargs,
|
368 |
+
temb,
|
369 |
+
num_frames
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
hidden_states = attn(
|
373 |
+
hidden_states,
|
374 |
+
encoder_hidden_states=encoder_hidden_states,
|
375 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
376 |
+
).sample
|
377 |
+
|
378 |
+
if num_frames > 1:
|
379 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
380 |
+
|
381 |
+
hidden_states = resnet(hidden_states, temb)
|
382 |
+
|
383 |
+
if num_frames > 1:
|
384 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
385 |
+
|
386 |
+
return hidden_states
|
387 |
+
|
388 |
+
|
389 |
+
class CrossAttnDownBlock3D(nn.Module):
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
in_channels: int,
|
393 |
+
out_channels: int,
|
394 |
+
temb_channels: int,
|
395 |
+
dropout: float = 0.0,
|
396 |
+
num_layers: int = 1,
|
397 |
+
resnet_eps: float = 1e-6,
|
398 |
+
resnet_time_scale_shift: str = "default",
|
399 |
+
resnet_act_fn: str = "swish",
|
400 |
+
resnet_groups: int = 32,
|
401 |
+
resnet_pre_norm: bool = True,
|
402 |
+
attn_num_head_channels=1,
|
403 |
+
cross_attention_dim=1280,
|
404 |
+
output_scale_factor=1.0,
|
405 |
+
downsample_padding=1,
|
406 |
+
add_downsample=True,
|
407 |
+
dual_cross_attention=False,
|
408 |
+
use_linear_projection=False,
|
409 |
+
only_cross_attention=False,
|
410 |
+
upcast_attention=False,
|
411 |
+
):
|
412 |
+
super().__init__()
|
413 |
+
resnets = []
|
414 |
+
attentions = []
|
415 |
+
temp_attentions = []
|
416 |
+
temp_convs = []
|
417 |
+
|
418 |
+
self.gradient_checkpointing = False
|
419 |
+
self.has_cross_attention = True
|
420 |
+
self.attn_num_head_channels = attn_num_head_channels
|
421 |
+
|
422 |
+
for i in range(num_layers):
|
423 |
+
in_channels = in_channels if i == 0 else out_channels
|
424 |
+
resnets.append(
|
425 |
+
ResnetBlock2D(
|
426 |
+
in_channels=in_channels,
|
427 |
+
out_channels=out_channels,
|
428 |
+
temb_channels=temb_channels,
|
429 |
+
eps=resnet_eps,
|
430 |
+
groups=resnet_groups,
|
431 |
+
dropout=dropout,
|
432 |
+
time_embedding_norm=resnet_time_scale_shift,
|
433 |
+
non_linearity=resnet_act_fn,
|
434 |
+
output_scale_factor=output_scale_factor,
|
435 |
+
pre_norm=resnet_pre_norm,
|
436 |
+
)
|
437 |
+
)
|
438 |
+
temp_convs.append(
|
439 |
+
TemporalConvLayer(
|
440 |
+
out_channels,
|
441 |
+
out_channels,
|
442 |
+
dropout=0.1
|
443 |
+
)
|
444 |
+
)
|
445 |
+
attentions.append(
|
446 |
+
Transformer2DModel(
|
447 |
+
out_channels // attn_num_head_channels,
|
448 |
+
attn_num_head_channels,
|
449 |
+
in_channels=out_channels,
|
450 |
+
num_layers=1,
|
451 |
+
cross_attention_dim=cross_attention_dim,
|
452 |
+
norm_num_groups=resnet_groups,
|
453 |
+
use_linear_projection=use_linear_projection,
|
454 |
+
only_cross_attention=only_cross_attention,
|
455 |
+
upcast_attention=upcast_attention,
|
456 |
+
)
|
457 |
+
)
|
458 |
+
temp_attentions.append(
|
459 |
+
TransformerTemporalModel(
|
460 |
+
out_channels // attn_num_head_channels,
|
461 |
+
attn_num_head_channels,
|
462 |
+
in_channels=out_channels,
|
463 |
+
num_layers=1,
|
464 |
+
cross_attention_dim=cross_attention_dim,
|
465 |
+
norm_num_groups=resnet_groups,
|
466 |
+
)
|
467 |
+
)
|
468 |
+
self.resnets = nn.ModuleList(resnets)
|
469 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
470 |
+
self.attentions = nn.ModuleList(attentions)
|
471 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
472 |
+
|
473 |
+
if add_downsample:
|
474 |
+
self.downsamplers = nn.ModuleList(
|
475 |
+
[
|
476 |
+
Downsample2D(
|
477 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
478 |
+
)
|
479 |
+
]
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
self.downsamplers = None
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self,
|
486 |
+
hidden_states,
|
487 |
+
temb=None,
|
488 |
+
encoder_hidden_states=None,
|
489 |
+
attention_mask=None,
|
490 |
+
num_frames=1,
|
491 |
+
cross_attention_kwargs=None,
|
492 |
+
):
|
493 |
+
# TODO(Patrick, William) - attention mask is not used
|
494 |
+
output_states = ()
|
495 |
+
|
496 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
497 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
498 |
+
):
|
499 |
+
|
500 |
+
if self.gradient_checkpointing:
|
501 |
+
hidden_states = cross_attn_g_c(
|
502 |
+
attn,
|
503 |
+
temp_attn,
|
504 |
+
resnet,
|
505 |
+
temp_conv,
|
506 |
+
hidden_states,
|
507 |
+
encoder_hidden_states,
|
508 |
+
cross_attention_kwargs,
|
509 |
+
temb,
|
510 |
+
num_frames,
|
511 |
+
inverse_temp=True
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
hidden_states = resnet(hidden_states, temb)
|
515 |
+
|
516 |
+
if num_frames > 1:
|
517 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
518 |
+
|
519 |
+
hidden_states = attn(
|
520 |
+
hidden_states,
|
521 |
+
encoder_hidden_states=encoder_hidden_states,
|
522 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
523 |
+
).sample
|
524 |
+
|
525 |
+
if num_frames > 1:
|
526 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
527 |
+
|
528 |
+
output_states += (hidden_states,)
|
529 |
+
|
530 |
+
if self.downsamplers is not None:
|
531 |
+
for downsampler in self.downsamplers:
|
532 |
+
hidden_states = downsampler(hidden_states)
|
533 |
+
|
534 |
+
output_states += (hidden_states,)
|
535 |
+
|
536 |
+
return hidden_states, output_states
|
537 |
+
|
538 |
+
|
539 |
+
class DownBlock3D(nn.Module):
|
540 |
+
def __init__(
|
541 |
+
self,
|
542 |
+
in_channels: int,
|
543 |
+
out_channels: int,
|
544 |
+
temb_channels: int,
|
545 |
+
dropout: float = 0.0,
|
546 |
+
num_layers: int = 1,
|
547 |
+
resnet_eps: float = 1e-6,
|
548 |
+
resnet_time_scale_shift: str = "default",
|
549 |
+
resnet_act_fn: str = "swish",
|
550 |
+
resnet_groups: int = 32,
|
551 |
+
resnet_pre_norm: bool = True,
|
552 |
+
output_scale_factor=1.0,
|
553 |
+
add_downsample=True,
|
554 |
+
downsample_padding=1,
|
555 |
+
):
|
556 |
+
super().__init__()
|
557 |
+
resnets = []
|
558 |
+
temp_convs = []
|
559 |
+
|
560 |
+
self.gradient_checkpointing = False
|
561 |
+
for i in range(num_layers):
|
562 |
+
in_channels = in_channels if i == 0 else out_channels
|
563 |
+
resnets.append(
|
564 |
+
ResnetBlock2D(
|
565 |
+
in_channels=in_channels,
|
566 |
+
out_channels=out_channels,
|
567 |
+
temb_channels=temb_channels,
|
568 |
+
eps=resnet_eps,
|
569 |
+
groups=resnet_groups,
|
570 |
+
dropout=dropout,
|
571 |
+
time_embedding_norm=resnet_time_scale_shift,
|
572 |
+
non_linearity=resnet_act_fn,
|
573 |
+
output_scale_factor=output_scale_factor,
|
574 |
+
pre_norm=resnet_pre_norm,
|
575 |
+
)
|
576 |
+
)
|
577 |
+
temp_convs.append(
|
578 |
+
TemporalConvLayer(
|
579 |
+
out_channels,
|
580 |
+
out_channels,
|
581 |
+
dropout=0.1
|
582 |
+
)
|
583 |
+
)
|
584 |
+
|
585 |
+
self.resnets = nn.ModuleList(resnets)
|
586 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
587 |
+
|
588 |
+
if add_downsample:
|
589 |
+
self.downsamplers = nn.ModuleList(
|
590 |
+
[
|
591 |
+
Downsample2D(
|
592 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
593 |
+
)
|
594 |
+
]
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
self.downsamplers = None
|
598 |
+
|
599 |
+
def forward(self, hidden_states, temb=None, num_frames=1):
|
600 |
+
output_states = ()
|
601 |
+
|
602 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
603 |
+
if self.gradient_checkpointing:
|
604 |
+
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
|
605 |
+
else:
|
606 |
+
hidden_states = resnet(hidden_states, temb)
|
607 |
+
|
608 |
+
if num_frames > 1:
|
609 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
610 |
+
|
611 |
+
output_states += (hidden_states,)
|
612 |
+
|
613 |
+
if self.downsamplers is not None:
|
614 |
+
for downsampler in self.downsamplers:
|
615 |
+
hidden_states = downsampler(hidden_states)
|
616 |
+
|
617 |
+
output_states += (hidden_states,)
|
618 |
+
|
619 |
+
return hidden_states, output_states
|
620 |
+
|
621 |
+
|
622 |
+
class CrossAttnUpBlock3D(nn.Module):
|
623 |
+
def __init__(
|
624 |
+
self,
|
625 |
+
in_channels: int,
|
626 |
+
out_channels: int,
|
627 |
+
prev_output_channel: int,
|
628 |
+
temb_channels: int,
|
629 |
+
dropout: float = 0.0,
|
630 |
+
num_layers: int = 1,
|
631 |
+
resnet_eps: float = 1e-6,
|
632 |
+
resnet_time_scale_shift: str = "default",
|
633 |
+
resnet_act_fn: str = "swish",
|
634 |
+
resnet_groups: int = 32,
|
635 |
+
resnet_pre_norm: bool = True,
|
636 |
+
attn_num_head_channels=1,
|
637 |
+
cross_attention_dim=1280,
|
638 |
+
output_scale_factor=1.0,
|
639 |
+
add_upsample=True,
|
640 |
+
dual_cross_attention=False,
|
641 |
+
use_linear_projection=False,
|
642 |
+
only_cross_attention=False,
|
643 |
+
upcast_attention=False,
|
644 |
+
):
|
645 |
+
super().__init__()
|
646 |
+
resnets = []
|
647 |
+
temp_convs = []
|
648 |
+
attentions = []
|
649 |
+
temp_attentions = []
|
650 |
+
|
651 |
+
self.gradient_checkpointing = False
|
652 |
+
self.has_cross_attention = True
|
653 |
+
self.attn_num_head_channels = attn_num_head_channels
|
654 |
+
|
655 |
+
for i in range(num_layers):
|
656 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
657 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
658 |
+
|
659 |
+
resnets.append(
|
660 |
+
ResnetBlock2D(
|
661 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
662 |
+
out_channels=out_channels,
|
663 |
+
temb_channels=temb_channels,
|
664 |
+
eps=resnet_eps,
|
665 |
+
groups=resnet_groups,
|
666 |
+
dropout=dropout,
|
667 |
+
time_embedding_norm=resnet_time_scale_shift,
|
668 |
+
non_linearity=resnet_act_fn,
|
669 |
+
output_scale_factor=output_scale_factor,
|
670 |
+
pre_norm=resnet_pre_norm,
|
671 |
+
)
|
672 |
+
)
|
673 |
+
temp_convs.append(
|
674 |
+
TemporalConvLayer(
|
675 |
+
out_channels,
|
676 |
+
out_channels,
|
677 |
+
dropout=0.1
|
678 |
+
)
|
679 |
+
)
|
680 |
+
attentions.append(
|
681 |
+
Transformer2DModel(
|
682 |
+
out_channels // attn_num_head_channels,
|
683 |
+
attn_num_head_channels,
|
684 |
+
in_channels=out_channels,
|
685 |
+
num_layers=1,
|
686 |
+
cross_attention_dim=cross_attention_dim,
|
687 |
+
norm_num_groups=resnet_groups,
|
688 |
+
use_linear_projection=use_linear_projection,
|
689 |
+
only_cross_attention=only_cross_attention,
|
690 |
+
upcast_attention=upcast_attention,
|
691 |
+
)
|
692 |
+
)
|
693 |
+
temp_attentions.append(
|
694 |
+
TransformerTemporalModel(
|
695 |
+
out_channels // attn_num_head_channels,
|
696 |
+
attn_num_head_channels,
|
697 |
+
in_channels=out_channels,
|
698 |
+
num_layers=1,
|
699 |
+
cross_attention_dim=cross_attention_dim,
|
700 |
+
norm_num_groups=resnet_groups,
|
701 |
+
)
|
702 |
+
)
|
703 |
+
self.resnets = nn.ModuleList(resnets)
|
704 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
705 |
+
self.attentions = nn.ModuleList(attentions)
|
706 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
707 |
+
|
708 |
+
if add_upsample:
|
709 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
710 |
+
else:
|
711 |
+
self.upsamplers = None
|
712 |
+
|
713 |
+
def forward(
|
714 |
+
self,
|
715 |
+
hidden_states,
|
716 |
+
res_hidden_states_tuple,
|
717 |
+
temb=None,
|
718 |
+
encoder_hidden_states=None,
|
719 |
+
upsample_size=None,
|
720 |
+
attention_mask=None,
|
721 |
+
num_frames=1,
|
722 |
+
cross_attention_kwargs=None,
|
723 |
+
):
|
724 |
+
# TODO(Patrick, William) - attention mask is not used
|
725 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
726 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
727 |
+
):
|
728 |
+
# pop res hidden states
|
729 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
730 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
731 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
732 |
+
|
733 |
+
if self.gradient_checkpointing:
|
734 |
+
hidden_states = cross_attn_g_c(
|
735 |
+
attn,
|
736 |
+
temp_attn,
|
737 |
+
resnet,
|
738 |
+
temp_conv,
|
739 |
+
hidden_states,
|
740 |
+
encoder_hidden_states,
|
741 |
+
cross_attention_kwargs,
|
742 |
+
temb,
|
743 |
+
num_frames,
|
744 |
+
inverse_temp=True
|
745 |
+
)
|
746 |
+
else:
|
747 |
+
hidden_states = resnet(hidden_states, temb)
|
748 |
+
|
749 |
+
if num_frames > 1:
|
750 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
751 |
+
|
752 |
+
hidden_states = attn(
|
753 |
+
hidden_states,
|
754 |
+
encoder_hidden_states=encoder_hidden_states,
|
755 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
756 |
+
).sample
|
757 |
+
|
758 |
+
if num_frames > 1:
|
759 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
760 |
+
|
761 |
+
if self.upsamplers is not None:
|
762 |
+
for upsampler in self.upsamplers:
|
763 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
764 |
+
|
765 |
+
return hidden_states
|
766 |
+
|
767 |
+
|
768 |
+
class UpBlock3D(nn.Module):
|
769 |
+
def __init__(
|
770 |
+
self,
|
771 |
+
in_channels: int,
|
772 |
+
prev_output_channel: int,
|
773 |
+
out_channels: int,
|
774 |
+
temb_channels: int,
|
775 |
+
dropout: float = 0.0,
|
776 |
+
num_layers: int = 1,
|
777 |
+
resnet_eps: float = 1e-6,
|
778 |
+
resnet_time_scale_shift: str = "default",
|
779 |
+
resnet_act_fn: str = "swish",
|
780 |
+
resnet_groups: int = 32,
|
781 |
+
resnet_pre_norm: bool = True,
|
782 |
+
output_scale_factor=1.0,
|
783 |
+
add_upsample=True,
|
784 |
+
):
|
785 |
+
super().__init__()
|
786 |
+
resnets = []
|
787 |
+
temp_convs = []
|
788 |
+
self.gradient_checkpointing = False
|
789 |
+
for i in range(num_layers):
|
790 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
791 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
792 |
+
|
793 |
+
resnets.append(
|
794 |
+
ResnetBlock2D(
|
795 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
796 |
+
out_channels=out_channels,
|
797 |
+
temb_channels=temb_channels,
|
798 |
+
eps=resnet_eps,
|
799 |
+
groups=resnet_groups,
|
800 |
+
dropout=dropout,
|
801 |
+
time_embedding_norm=resnet_time_scale_shift,
|
802 |
+
non_linearity=resnet_act_fn,
|
803 |
+
output_scale_factor=output_scale_factor,
|
804 |
+
pre_norm=resnet_pre_norm,
|
805 |
+
)
|
806 |
+
)
|
807 |
+
temp_convs.append(
|
808 |
+
TemporalConvLayer(
|
809 |
+
out_channels,
|
810 |
+
out_channels,
|
811 |
+
dropout=0.1
|
812 |
+
)
|
813 |
+
)
|
814 |
+
|
815 |
+
self.resnets = nn.ModuleList(resnets)
|
816 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
817 |
+
|
818 |
+
if add_upsample:
|
819 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
820 |
+
else:
|
821 |
+
self.upsamplers = None
|
822 |
+
|
823 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
|
824 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
825 |
+
# pop res hidden states
|
826 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
827 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
828 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
829 |
+
|
830 |
+
if self.gradient_checkpointing:
|
831 |
+
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
|
832 |
+
else:
|
833 |
+
hidden_states = resnet(hidden_states, temb)
|
834 |
+
|
835 |
+
if num_frames > 1:
|
836 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
837 |
+
|
838 |
+
if self.upsamplers is not None:
|
839 |
+
for upsampler in self.upsamplers:
|
840 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
841 |
+
|
842 |
+
return hidden_states
|
unet_3d_condition.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
2 |
+
# Copyright 2023 The ModelScope Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
from diffusers.models.transformer_temporal import TransformerTemporalModel
|
27 |
+
from .unet_3d_blocks import (
|
28 |
+
CrossAttnDownBlock3D,
|
29 |
+
CrossAttnUpBlock3D,
|
30 |
+
DownBlock3D,
|
31 |
+
UNetMidBlock3DCrossAttn,
|
32 |
+
UpBlock3D,
|
33 |
+
get_down_block,
|
34 |
+
get_up_block,
|
35 |
+
transformer_g_c
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class UNet3DConditionOutput(BaseOutput):
|
44 |
+
"""
|
45 |
+
Args:
|
46 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
47 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
48 |
+
"""
|
49 |
+
|
50 |
+
sample: torch.FloatTensor
|
51 |
+
|
52 |
+
|
53 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
54 |
+
r"""
|
55 |
+
UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
56 |
+
and returns sample shaped output.
|
57 |
+
|
58 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
59 |
+
implements for all the models (such as downloading or saving, etc.)
|
60 |
+
|
61 |
+
Parameters:
|
62 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
63 |
+
Height and width of input/output sample.
|
64 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
65 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
66 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
67 |
+
The tuple of downsample blocks to use.
|
68 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
69 |
+
The tuple of upsample blocks to use.
|
70 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
71 |
+
The tuple of output channels for each block.
|
72 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
73 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
74 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
75 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
76 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
77 |
+
If `None`, it will skip the normalization and activation layers in post-processing
|
78 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
79 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
80 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
81 |
+
"""
|
82 |
+
|
83 |
+
_supports_gradient_checkpointing = True
|
84 |
+
|
85 |
+
@register_to_config
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
sample_size: Optional[int] = None,
|
89 |
+
in_channels: int = 4,
|
90 |
+
out_channels: int = 4,
|
91 |
+
down_block_types: Tuple[str] = (
|
92 |
+
"CrossAttnDownBlock3D",
|
93 |
+
"CrossAttnDownBlock3D",
|
94 |
+
"CrossAttnDownBlock3D",
|
95 |
+
"DownBlock3D",
|
96 |
+
),
|
97 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
98 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
99 |
+
layers_per_block: int = 2,
|
100 |
+
downsample_padding: int = 1,
|
101 |
+
mid_block_scale_factor: float = 1,
|
102 |
+
act_fn: str = "silu",
|
103 |
+
norm_num_groups: Optional[int] = 32,
|
104 |
+
norm_eps: float = 1e-5,
|
105 |
+
cross_attention_dim: int = 1024,
|
106 |
+
attention_head_dim: Union[int, Tuple[int]] = 64,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.sample_size = sample_size
|
111 |
+
self.gradient_checkpointing = False
|
112 |
+
# Check inputs
|
113 |
+
if len(down_block_types) != len(up_block_types):
|
114 |
+
raise ValueError(
|
115 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
116 |
+
)
|
117 |
+
|
118 |
+
if len(block_out_channels) != len(down_block_types):
|
119 |
+
raise ValueError(
|
120 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
121 |
+
)
|
122 |
+
|
123 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
124 |
+
raise ValueError(
|
125 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
126 |
+
)
|
127 |
+
|
128 |
+
# input
|
129 |
+
conv_in_kernel = 3
|
130 |
+
conv_out_kernel = 3
|
131 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
132 |
+
self.conv_in = nn.Conv2d(
|
133 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
134 |
+
)
|
135 |
+
|
136 |
+
# time
|
137 |
+
time_embed_dim = block_out_channels[0] * 4
|
138 |
+
self.time_proj = Timesteps(block_out_channels[0], True, 0)
|
139 |
+
timestep_input_dim = block_out_channels[0]
|
140 |
+
|
141 |
+
self.time_embedding = TimestepEmbedding(
|
142 |
+
timestep_input_dim,
|
143 |
+
time_embed_dim,
|
144 |
+
act_fn=act_fn,
|
145 |
+
)
|
146 |
+
|
147 |
+
self.transformer_in = TransformerTemporalModel(
|
148 |
+
num_attention_heads=8,
|
149 |
+
attention_head_dim=attention_head_dim,
|
150 |
+
in_channels=block_out_channels[0],
|
151 |
+
num_layers=1,
|
152 |
+
)
|
153 |
+
|
154 |
+
# class embedding
|
155 |
+
self.down_blocks = nn.ModuleList([])
|
156 |
+
self.up_blocks = nn.ModuleList([])
|
157 |
+
|
158 |
+
if isinstance(attention_head_dim, int):
|
159 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
160 |
+
|
161 |
+
# down
|
162 |
+
output_channel = block_out_channels[0]
|
163 |
+
for i, down_block_type in enumerate(down_block_types):
|
164 |
+
input_channel = output_channel
|
165 |
+
output_channel = block_out_channels[i]
|
166 |
+
is_final_block = i == len(block_out_channels) - 1
|
167 |
+
|
168 |
+
down_block = get_down_block(
|
169 |
+
down_block_type,
|
170 |
+
num_layers=layers_per_block,
|
171 |
+
in_channels=input_channel,
|
172 |
+
out_channels=output_channel,
|
173 |
+
temb_channels=time_embed_dim,
|
174 |
+
add_downsample=not is_final_block,
|
175 |
+
resnet_eps=norm_eps,
|
176 |
+
resnet_act_fn=act_fn,
|
177 |
+
resnet_groups=norm_num_groups,
|
178 |
+
cross_attention_dim=cross_attention_dim,
|
179 |
+
attn_num_head_channels=attention_head_dim[i],
|
180 |
+
downsample_padding=downsample_padding,
|
181 |
+
dual_cross_attention=False,
|
182 |
+
)
|
183 |
+
self.down_blocks.append(down_block)
|
184 |
+
|
185 |
+
# mid
|
186 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
187 |
+
in_channels=block_out_channels[-1],
|
188 |
+
temb_channels=time_embed_dim,
|
189 |
+
resnet_eps=norm_eps,
|
190 |
+
resnet_act_fn=act_fn,
|
191 |
+
output_scale_factor=mid_block_scale_factor,
|
192 |
+
cross_attention_dim=cross_attention_dim,
|
193 |
+
attn_num_head_channels=attention_head_dim[-1],
|
194 |
+
resnet_groups=norm_num_groups,
|
195 |
+
dual_cross_attention=False,
|
196 |
+
)
|
197 |
+
|
198 |
+
# count how many layers upsample the images
|
199 |
+
self.num_upsamplers = 0
|
200 |
+
|
201 |
+
# up
|
202 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
203 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
204 |
+
|
205 |
+
output_channel = reversed_block_out_channels[0]
|
206 |
+
for i, up_block_type in enumerate(up_block_types):
|
207 |
+
is_final_block = i == len(block_out_channels) - 1
|
208 |
+
|
209 |
+
prev_output_channel = output_channel
|
210 |
+
output_channel = reversed_block_out_channels[i]
|
211 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
212 |
+
|
213 |
+
# add upsample block for all BUT final layer
|
214 |
+
if not is_final_block:
|
215 |
+
add_upsample = True
|
216 |
+
self.num_upsamplers += 1
|
217 |
+
else:
|
218 |
+
add_upsample = False
|
219 |
+
|
220 |
+
up_block = get_up_block(
|
221 |
+
up_block_type,
|
222 |
+
num_layers=layers_per_block + 1,
|
223 |
+
in_channels=input_channel,
|
224 |
+
out_channels=output_channel,
|
225 |
+
prev_output_channel=prev_output_channel,
|
226 |
+
temb_channels=time_embed_dim,
|
227 |
+
add_upsample=add_upsample,
|
228 |
+
resnet_eps=norm_eps,
|
229 |
+
resnet_act_fn=act_fn,
|
230 |
+
resnet_groups=norm_num_groups,
|
231 |
+
cross_attention_dim=cross_attention_dim,
|
232 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
233 |
+
dual_cross_attention=False,
|
234 |
+
)
|
235 |
+
self.up_blocks.append(up_block)
|
236 |
+
prev_output_channel = output_channel
|
237 |
+
|
238 |
+
# out
|
239 |
+
if norm_num_groups is not None:
|
240 |
+
self.conv_norm_out = nn.GroupNorm(
|
241 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
242 |
+
)
|
243 |
+
self.conv_act = nn.SiLU()
|
244 |
+
else:
|
245 |
+
self.conv_norm_out = None
|
246 |
+
self.conv_act = None
|
247 |
+
|
248 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
249 |
+
self.conv_out = nn.Conv2d(
|
250 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
251 |
+
)
|
252 |
+
|
253 |
+
def set_attention_slice(self, slice_size):
|
254 |
+
r"""
|
255 |
+
Enable sliced attention computation.
|
256 |
+
|
257 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
258 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
262 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
263 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
264 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
265 |
+
must be a multiple of `slice_size`.
|
266 |
+
"""
|
267 |
+
sliceable_head_dims = []
|
268 |
+
|
269 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
270 |
+
if hasattr(module, "set_attention_slice"):
|
271 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
272 |
+
|
273 |
+
for child in module.children():
|
274 |
+
fn_recursive_retrieve_slicable_dims(child)
|
275 |
+
|
276 |
+
# retrieve number of attention layers
|
277 |
+
for module in self.children():
|
278 |
+
fn_recursive_retrieve_slicable_dims(module)
|
279 |
+
|
280 |
+
num_slicable_layers = len(sliceable_head_dims)
|
281 |
+
|
282 |
+
if slice_size == "auto":
|
283 |
+
# half the attention head size is usually a good trade-off between
|
284 |
+
# speed and memory
|
285 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
286 |
+
elif slice_size == "max":
|
287 |
+
# make smallest slice possible
|
288 |
+
slice_size = num_slicable_layers * [1]
|
289 |
+
|
290 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
291 |
+
|
292 |
+
if len(slice_size) != len(sliceable_head_dims):
|
293 |
+
raise ValueError(
|
294 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
295 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
296 |
+
)
|
297 |
+
|
298 |
+
for i in range(len(slice_size)):
|
299 |
+
size = slice_size[i]
|
300 |
+
dim = sliceable_head_dims[i]
|
301 |
+
if size is not None and size > dim:
|
302 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
303 |
+
|
304 |
+
# Recursively walk through all the children.
|
305 |
+
# Any children which exposes the set_attention_slice method
|
306 |
+
# gets the message
|
307 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
308 |
+
if hasattr(module, "set_attention_slice"):
|
309 |
+
module.set_attention_slice(slice_size.pop())
|
310 |
+
|
311 |
+
for child in module.children():
|
312 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
313 |
+
|
314 |
+
reversed_slice_size = list(reversed(slice_size))
|
315 |
+
for module in self.children():
|
316 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
317 |
+
|
318 |
+
def _set_gradient_checkpointing(self, value=False):
|
319 |
+
self.gradient_checkpointing = value
|
320 |
+
self.mid_block.gradient_checkpointing = value
|
321 |
+
for module in self.down_blocks + self.up_blocks:
|
322 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
323 |
+
module.gradient_checkpointing = value
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
sample: torch.FloatTensor,
|
328 |
+
timestep: Union[torch.Tensor, float, int],
|
329 |
+
encoder_hidden_states: torch.Tensor,
|
330 |
+
class_labels: Optional[torch.Tensor] = None,
|
331 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
332 |
+
attention_mask: Optional[torch.Tensor] = None,
|
333 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
334 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
335 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
336 |
+
return_dict: bool = True,
|
337 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
338 |
+
r"""
|
339 |
+
Args:
|
340 |
+
sample (`torch.FloatTensor`): (batch, num_frames, channel, height, width) noisy inputs tensor
|
341 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
342 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
343 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
344 |
+
Whether or not to return a [`models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain tuple.
|
345 |
+
cross_attention_kwargs (`dict`, *optional*):
|
346 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
347 |
+
`self.processor` in
|
348 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
[`~models.unet_2d_condition.UNet3DConditionOutput`] or `tuple`:
|
352 |
+
[`~models.unet_2d_condition.UNet3DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
353 |
+
returning a tuple, the first element is the sample tensor.
|
354 |
+
"""
|
355 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
356 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
357 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
358 |
+
# on the fly if necessary.
|
359 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
360 |
+
|
361 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
362 |
+
forward_upsample_size = False
|
363 |
+
upsample_size = None
|
364 |
+
|
365 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
366 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
367 |
+
forward_upsample_size = True
|
368 |
+
|
369 |
+
# prepare attention_mask
|
370 |
+
if attention_mask is not None:
|
371 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
372 |
+
attention_mask = attention_mask.unsqueeze(1)
|
373 |
+
|
374 |
+
# 1. time
|
375 |
+
timesteps = timestep
|
376 |
+
if not torch.is_tensor(timesteps):
|
377 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
378 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
379 |
+
is_mps = sample.device.type == "mps"
|
380 |
+
if isinstance(timestep, float):
|
381 |
+
dtype = torch.float32 if is_mps else torch.float64
|
382 |
+
else:
|
383 |
+
dtype = torch.int32 if is_mps else torch.int64
|
384 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
385 |
+
elif len(timesteps.shape) == 0:
|
386 |
+
timesteps = timesteps[None].to(sample.device)
|
387 |
+
|
388 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
389 |
+
num_frames = sample.shape[2]
|
390 |
+
timesteps = timesteps.expand(sample.shape[0])
|
391 |
+
|
392 |
+
t_emb = self.time_proj(timesteps)
|
393 |
+
|
394 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
395 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
396 |
+
# there might be better ways to encapsulate this.
|
397 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
398 |
+
|
399 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
400 |
+
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
|
401 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
|
402 |
+
|
403 |
+
# 2. pre-process
|
404 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
|
405 |
+
sample = self.conv_in(sample)
|
406 |
+
|
407 |
+
if num_frames > 1:
|
408 |
+
if self.gradient_checkpointing:
|
409 |
+
sample = transformer_g_c(self.transformer_in, sample, num_frames)
|
410 |
+
else:
|
411 |
+
sample = self.transformer_in(sample, num_frames=num_frames).sample
|
412 |
+
|
413 |
+
# 3. down
|
414 |
+
down_block_res_samples = (sample,)
|
415 |
+
for downsample_block in self.down_blocks:
|
416 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
417 |
+
sample, res_samples = downsample_block(
|
418 |
+
hidden_states=sample,
|
419 |
+
temb=emb,
|
420 |
+
encoder_hidden_states=encoder_hidden_states,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
num_frames=num_frames,
|
423 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
|
427 |
+
|
428 |
+
down_block_res_samples += res_samples
|
429 |
+
|
430 |
+
if down_block_additional_residuals is not None:
|
431 |
+
new_down_block_res_samples = ()
|
432 |
+
|
433 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
434 |
+
down_block_res_samples, down_block_additional_residuals
|
435 |
+
):
|
436 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
437 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
438 |
+
|
439 |
+
down_block_res_samples = new_down_block_res_samples
|
440 |
+
|
441 |
+
# 4. mid
|
442 |
+
if self.mid_block is not None:
|
443 |
+
sample = self.mid_block(
|
444 |
+
sample,
|
445 |
+
emb,
|
446 |
+
encoder_hidden_states=encoder_hidden_states,
|
447 |
+
attention_mask=attention_mask,
|
448 |
+
num_frames=num_frames,
|
449 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
450 |
+
)
|
451 |
+
|
452 |
+
if mid_block_additional_residual is not None:
|
453 |
+
sample = sample + mid_block_additional_residual
|
454 |
+
|
455 |
+
# 5. up
|
456 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
457 |
+
is_final_block = i == len(self.up_blocks) - 1
|
458 |
+
|
459 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
460 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
461 |
+
|
462 |
+
# if we have not reached the final block and need to forward the
|
463 |
+
# upsample size, we do it here
|
464 |
+
if not is_final_block and forward_upsample_size:
|
465 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
466 |
+
|
467 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
468 |
+
sample = upsample_block(
|
469 |
+
hidden_states=sample,
|
470 |
+
temb=emb,
|
471 |
+
res_hidden_states_tuple=res_samples,
|
472 |
+
encoder_hidden_states=encoder_hidden_states,
|
473 |
+
upsample_size=upsample_size,
|
474 |
+
attention_mask=attention_mask,
|
475 |
+
num_frames=num_frames,
|
476 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
sample = upsample_block(
|
480 |
+
hidden_states=sample,
|
481 |
+
temb=emb,
|
482 |
+
res_hidden_states_tuple=res_samples,
|
483 |
+
upsample_size=upsample_size,
|
484 |
+
num_frames=num_frames,
|
485 |
+
)
|
486 |
+
|
487 |
+
# 6. post-process
|
488 |
+
if self.conv_norm_out:
|
489 |
+
sample = self.conv_norm_out(sample)
|
490 |
+
sample = self.conv_act(sample)
|
491 |
+
|
492 |
+
sample = self.conv_out(sample)
|
493 |
+
|
494 |
+
# reshape to (batch, channel, framerate, width, height)
|
495 |
+
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
|
496 |
+
|
497 |
+
if not return_dict:
|
498 |
+
return (sample,)
|
499 |
+
|
500 |
+
return UNet3DConditionOutput(sample=sample)
|
zeroscope_v2_576w/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
zeroscope_v2_576w/README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-to-video
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
---
|
5 |
+
|
6 |
+
![model example](https://i.imgur.com/1mrNnh8.png)
|
7 |
+
|
8 |
+
# zeroscope_v2 576w
|
9 |
+
A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output. This model was trained from the [original weights](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis) using 9,923 clips and 29,769 tagged frames at 24 frames, 576x320 resolution.<br />
|
10 |
+
zeroscope_v2_567w is specifically designed for upscaling with [zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) using vid2vid in the [1111 text2video](https://github.com/kabachuha/sd-webui-text2video) extension by [kabachuha](https://github.com/kabachuha). Leveraging this model as a preliminary step allows for superior overall compositions at higher resolutions in zeroscope_v2_XL, permitting faster exploration in 576x320 before transitioning to a high-resolution render. See some [example outputs](https://www.youtube.com/watch?v=HO3APT_0UA4) that have been upscaled to 1024x576 using zeroscope_v2_XL. (courtesy of [dotsimulate](https://www.instagram.com/dotsimulate/))<br />
|
11 |
+
|
12 |
+
zeroscope_v2_576w uses 7.9gb of vram when rendering 30 frames at 576x320
|
13 |
+
|
14 |
+
### Using it with the 1111 text2video extension
|
15 |
+
|
16 |
+
1. Download files in the zs2_576w folder.
|
17 |
+
2. Replace the respective files in the 'stable-diffusion-webui\models\ModelScope\t2v' directory.
|
18 |
+
|
19 |
+
### Upscaling recommendations
|
20 |
+
|
21 |
+
For upscaling, it's recommended to use [zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) via vid2vid in the 1111 extension. It works best at 1024x576 with a denoise strength between 0.66 and 0.85. Remember to use the same prompt that was used to generate the original clip. <br />
|
22 |
+
|
23 |
+
### Usage in 🧨 Diffusers
|
24 |
+
|
25 |
+
Let's first install the libraries required:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
$ pip install diffusers transformers accelerate torch
|
29 |
+
```
|
30 |
+
|
31 |
+
Now, generate a video:
|
32 |
+
|
33 |
+
```py
|
34 |
+
import torch
|
35 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
36 |
+
from diffusers.utils import export_to_video
|
37 |
+
|
38 |
+
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
|
39 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
40 |
+
pipe.enable_model_cpu_offload()
|
41 |
+
|
42 |
+
prompt = "Darth Vader is surfing on waves"
|
43 |
+
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
|
44 |
+
video_path = export_to_video(video_frames)
|
45 |
+
```
|
46 |
+
|
47 |
+
Here are some results:
|
48 |
+
|
49 |
+
<table>
|
50 |
+
<tr>
|
51 |
+
Darth vader is surfing on waves.
|
52 |
+
<br>
|
53 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/darthvader_cerpense.gif"
|
54 |
+
alt="Darth vader surfing in waves."
|
55 |
+
style="width: 576;" />
|
56 |
+
</center></td>
|
57 |
+
</tr>
|
58 |
+
</table>
|
59 |
+
|
60 |
+
### Known issues
|
61 |
+
|
62 |
+
Lower resolutions or fewer frames could lead to suboptimal output. <br />
|
63 |
+
|
64 |
+
Thanks to [camenduru](https://github.com/camenduru), [kabachuha](https://github.com/kabachuha), [ExponentialML](https://github.com/ExponentialML), [dotsimulate](https://www.instagram.com/dotsimulate/), [VANYA](https://twitter.com/veryVANYA), [polyware](https://twitter.com/polyware_ai), [tin2tin](https://github.com/tin2tin)<br />
|
zeroscope_v2_576w/model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "TextToVideoSDPipeline",
|
3 |
+
"_diffusers_version": "0.17.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"DDIMScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"CLIPTextModel"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTokenizer"
|
15 |
+
],
|
16 |
+
"unet": [
|
17 |
+
"diffusers",
|
18 |
+
"UNet3DConditionModel"
|
19 |
+
],
|
20 |
+
"vae": [
|
21 |
+
"diffusers",
|
22 |
+
"AutoencoderKL"
|
23 |
+
]
|
24 |
+
}
|
zeroscope_v2_576w/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.17.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "epsilon",
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": false,
|
14 |
+
"skip_prk_steps": true,
|
15 |
+
"steps_offset": 1,
|
16 |
+
"thresholding": false,
|
17 |
+
"trained_betas": null
|
18 |
+
}
|
zeroscope_v2_576w/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./models/model_scope_diffusers/",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 23,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.29.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
zeroscope_v2_576w/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76877281ed10a4a71f6c2aa0edd286a9e5e23a852a05d13fb05965b464a305bb
|
3 |
+
size 680904225
|
zeroscope_v2_576w/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zeroscope_v2_576w/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
zeroscope_v2_576w/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"tokenizer_class": "CLIPTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
zeroscope_v2_576w/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zeroscope_v2_576w/unet/config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet3DConditionModel",
|
3 |
+
"_diffusers_version": "0.17.0.dev0",
|
4 |
+
"_name_or_path": "./models/model_scope_diffusers/",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"attention_head_dim": 64,
|
7 |
+
"block_out_channels": [
|
8 |
+
320,
|
9 |
+
640,
|
10 |
+
1280,
|
11 |
+
1280
|
12 |
+
],
|
13 |
+
"cross_attention_dim": 1024,
|
14 |
+
"down_block_types": [
|
15 |
+
"CrossAttnDownBlock3D",
|
16 |
+
"CrossAttnDownBlock3D",
|
17 |
+
"CrossAttnDownBlock3D",
|
18 |
+
"DownBlock3D"
|
19 |
+
],
|
20 |
+
"downsample_padding": 1,
|
21 |
+
"in_channels": 4,
|
22 |
+
"layers_per_block": 2,
|
23 |
+
"mid_block_scale_factor": 1,
|
24 |
+
"norm_eps": 1e-05,
|
25 |
+
"norm_num_groups": 32,
|
26 |
+
"out_channels": 4,
|
27 |
+
"sample_size": 32,
|
28 |
+
"up_block_types": [
|
29 |
+
"UpBlock3D",
|
30 |
+
"CrossAttnUpBlock3D",
|
31 |
+
"CrossAttnUpBlock3D",
|
32 |
+
"CrossAttnUpBlock3D"
|
33 |
+
]
|
34 |
+
}
|
zeroscope_v2_576w/unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42b51ea486109b7479366e01aae7e267a81bb750c13eb5c6b765a3d5bc7987c9
|
3 |
+
size 2823110385
|
zeroscope_v2_576w/vae/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.17.0.dev0",
|
4 |
+
"_name_or_path": "./models/model_scope_diffusers/",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"layers_per_block": 2,
|
21 |
+
"norm_num_groups": 32,
|
22 |
+
"out_channels": 3,
|
23 |
+
"sample_size": 512,
|
24 |
+
"scaling_factor": 0.18215,
|
25 |
+
"up_block_types": [
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D"
|
30 |
+
]
|
31 |
+
}
|
zeroscope_v2_576w/vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b0d11ff25d00ceaa02f602831d9cfe650509fdc850c0a1bcb2acdfa03bd5d56
|
3 |
+
size 167407857
|