Delete unet_3d_condition.py
Browse files- unet_3d_condition.py +0 -500
unet_3d_condition.py
DELETED
@@ -1,500 +0,0 @@
|
|
1 |
-
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
2 |
-
# Copyright 2023 The ModelScope Team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
from dataclasses import dataclass
|
16 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
import torch.nn as nn
|
20 |
-
import torch.utils.checkpoint
|
21 |
-
|
22 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
-
from diffusers.utils import BaseOutput, logging
|
24 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
25 |
-
from diffusers.models.modeling_utils import ModelMixin
|
26 |
-
from diffusers.models.transformer_temporal import TransformerTemporalModel
|
27 |
-
from .unet_3d_blocks import (
|
28 |
-
CrossAttnDownBlock3D,
|
29 |
-
CrossAttnUpBlock3D,
|
30 |
-
DownBlock3D,
|
31 |
-
UNetMidBlock3DCrossAttn,
|
32 |
-
UpBlock3D,
|
33 |
-
get_down_block,
|
34 |
-
get_up_block,
|
35 |
-
transformer_g_c
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
-
|
41 |
-
|
42 |
-
@dataclass
|
43 |
-
class UNet3DConditionOutput(BaseOutput):
|
44 |
-
"""
|
45 |
-
Args:
|
46 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
47 |
-
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
48 |
-
"""
|
49 |
-
|
50 |
-
sample: torch.FloatTensor
|
51 |
-
|
52 |
-
|
53 |
-
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
54 |
-
r"""
|
55 |
-
UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
56 |
-
and returns sample shaped output.
|
57 |
-
|
58 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
59 |
-
implements for all the models (such as downloading or saving, etc.)
|
60 |
-
|
61 |
-
Parameters:
|
62 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
63 |
-
Height and width of input/output sample.
|
64 |
-
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
65 |
-
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
66 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
67 |
-
The tuple of downsample blocks to use.
|
68 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
69 |
-
The tuple of upsample blocks to use.
|
70 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
71 |
-
The tuple of output channels for each block.
|
72 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
73 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
74 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
75 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
76 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
77 |
-
If `None`, it will skip the normalization and activation layers in post-processing
|
78 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
79 |
-
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
80 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
81 |
-
"""
|
82 |
-
|
83 |
-
_supports_gradient_checkpointing = True
|
84 |
-
|
85 |
-
@register_to_config
|
86 |
-
def __init__(
|
87 |
-
self,
|
88 |
-
sample_size: Optional[int] = None,
|
89 |
-
in_channels: int = 4,
|
90 |
-
out_channels: int = 4,
|
91 |
-
down_block_types: Tuple[str] = (
|
92 |
-
"CrossAttnDownBlock3D",
|
93 |
-
"CrossAttnDownBlock3D",
|
94 |
-
"CrossAttnDownBlock3D",
|
95 |
-
"DownBlock3D",
|
96 |
-
),
|
97 |
-
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
98 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
99 |
-
layers_per_block: int = 2,
|
100 |
-
downsample_padding: int = 1,
|
101 |
-
mid_block_scale_factor: float = 1,
|
102 |
-
act_fn: str = "silu",
|
103 |
-
norm_num_groups: Optional[int] = 32,
|
104 |
-
norm_eps: float = 1e-5,
|
105 |
-
cross_attention_dim: int = 1024,
|
106 |
-
attention_head_dim: Union[int, Tuple[int]] = 64,
|
107 |
-
):
|
108 |
-
super().__init__()
|
109 |
-
|
110 |
-
self.sample_size = sample_size
|
111 |
-
self.gradient_checkpointing = False
|
112 |
-
# Check inputs
|
113 |
-
if len(down_block_types) != len(up_block_types):
|
114 |
-
raise ValueError(
|
115 |
-
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
116 |
-
)
|
117 |
-
|
118 |
-
if len(block_out_channels) != len(down_block_types):
|
119 |
-
raise ValueError(
|
120 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
121 |
-
)
|
122 |
-
|
123 |
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
124 |
-
raise ValueError(
|
125 |
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
126 |
-
)
|
127 |
-
|
128 |
-
# input
|
129 |
-
conv_in_kernel = 3
|
130 |
-
conv_out_kernel = 3
|
131 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
132 |
-
self.conv_in = nn.Conv2d(
|
133 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
134 |
-
)
|
135 |
-
|
136 |
-
# time
|
137 |
-
time_embed_dim = block_out_channels[0] * 4
|
138 |
-
self.time_proj = Timesteps(block_out_channels[0], True, 0)
|
139 |
-
timestep_input_dim = block_out_channels[0]
|
140 |
-
|
141 |
-
self.time_embedding = TimestepEmbedding(
|
142 |
-
timestep_input_dim,
|
143 |
-
time_embed_dim,
|
144 |
-
act_fn=act_fn,
|
145 |
-
)
|
146 |
-
|
147 |
-
self.transformer_in = TransformerTemporalModel(
|
148 |
-
num_attention_heads=8,
|
149 |
-
attention_head_dim=attention_head_dim,
|
150 |
-
in_channels=block_out_channels[0],
|
151 |
-
num_layers=1,
|
152 |
-
)
|
153 |
-
|
154 |
-
# class embedding
|
155 |
-
self.down_blocks = nn.ModuleList([])
|
156 |
-
self.up_blocks = nn.ModuleList([])
|
157 |
-
|
158 |
-
if isinstance(attention_head_dim, int):
|
159 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
160 |
-
|
161 |
-
# down
|
162 |
-
output_channel = block_out_channels[0]
|
163 |
-
for i, down_block_type in enumerate(down_block_types):
|
164 |
-
input_channel = output_channel
|
165 |
-
output_channel = block_out_channels[i]
|
166 |
-
is_final_block = i == len(block_out_channels) - 1
|
167 |
-
|
168 |
-
down_block = get_down_block(
|
169 |
-
down_block_type,
|
170 |
-
num_layers=layers_per_block,
|
171 |
-
in_channels=input_channel,
|
172 |
-
out_channels=output_channel,
|
173 |
-
temb_channels=time_embed_dim,
|
174 |
-
add_downsample=not is_final_block,
|
175 |
-
resnet_eps=norm_eps,
|
176 |
-
resnet_act_fn=act_fn,
|
177 |
-
resnet_groups=norm_num_groups,
|
178 |
-
cross_attention_dim=cross_attention_dim,
|
179 |
-
attn_num_head_channels=attention_head_dim[i],
|
180 |
-
downsample_padding=downsample_padding,
|
181 |
-
dual_cross_attention=False,
|
182 |
-
)
|
183 |
-
self.down_blocks.append(down_block)
|
184 |
-
|
185 |
-
# mid
|
186 |
-
self.mid_block = UNetMidBlock3DCrossAttn(
|
187 |
-
in_channels=block_out_channels[-1],
|
188 |
-
temb_channels=time_embed_dim,
|
189 |
-
resnet_eps=norm_eps,
|
190 |
-
resnet_act_fn=act_fn,
|
191 |
-
output_scale_factor=mid_block_scale_factor,
|
192 |
-
cross_attention_dim=cross_attention_dim,
|
193 |
-
attn_num_head_channels=attention_head_dim[-1],
|
194 |
-
resnet_groups=norm_num_groups,
|
195 |
-
dual_cross_attention=False,
|
196 |
-
)
|
197 |
-
|
198 |
-
# count how many layers upsample the images
|
199 |
-
self.num_upsamplers = 0
|
200 |
-
|
201 |
-
# up
|
202 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
203 |
-
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
204 |
-
|
205 |
-
output_channel = reversed_block_out_channels[0]
|
206 |
-
for i, up_block_type in enumerate(up_block_types):
|
207 |
-
is_final_block = i == len(block_out_channels) - 1
|
208 |
-
|
209 |
-
prev_output_channel = output_channel
|
210 |
-
output_channel = reversed_block_out_channels[i]
|
211 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
212 |
-
|
213 |
-
# add upsample block for all BUT final layer
|
214 |
-
if not is_final_block:
|
215 |
-
add_upsample = True
|
216 |
-
self.num_upsamplers += 1
|
217 |
-
else:
|
218 |
-
add_upsample = False
|
219 |
-
|
220 |
-
up_block = get_up_block(
|
221 |
-
up_block_type,
|
222 |
-
num_layers=layers_per_block + 1,
|
223 |
-
in_channels=input_channel,
|
224 |
-
out_channels=output_channel,
|
225 |
-
prev_output_channel=prev_output_channel,
|
226 |
-
temb_channels=time_embed_dim,
|
227 |
-
add_upsample=add_upsample,
|
228 |
-
resnet_eps=norm_eps,
|
229 |
-
resnet_act_fn=act_fn,
|
230 |
-
resnet_groups=norm_num_groups,
|
231 |
-
cross_attention_dim=cross_attention_dim,
|
232 |
-
attn_num_head_channels=reversed_attention_head_dim[i],
|
233 |
-
dual_cross_attention=False,
|
234 |
-
)
|
235 |
-
self.up_blocks.append(up_block)
|
236 |
-
prev_output_channel = output_channel
|
237 |
-
|
238 |
-
# out
|
239 |
-
if norm_num_groups is not None:
|
240 |
-
self.conv_norm_out = nn.GroupNorm(
|
241 |
-
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
242 |
-
)
|
243 |
-
self.conv_act = nn.SiLU()
|
244 |
-
else:
|
245 |
-
self.conv_norm_out = None
|
246 |
-
self.conv_act = None
|
247 |
-
|
248 |
-
conv_out_padding = (conv_out_kernel - 1) // 2
|
249 |
-
self.conv_out = nn.Conv2d(
|
250 |
-
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
251 |
-
)
|
252 |
-
|
253 |
-
def set_attention_slice(self, slice_size):
|
254 |
-
r"""
|
255 |
-
Enable sliced attention computation.
|
256 |
-
|
257 |
-
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
258 |
-
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
259 |
-
|
260 |
-
Args:
|
261 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
262 |
-
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
263 |
-
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
264 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
265 |
-
must be a multiple of `slice_size`.
|
266 |
-
"""
|
267 |
-
sliceable_head_dims = []
|
268 |
-
|
269 |
-
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
270 |
-
if hasattr(module, "set_attention_slice"):
|
271 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
272 |
-
|
273 |
-
for child in module.children():
|
274 |
-
fn_recursive_retrieve_slicable_dims(child)
|
275 |
-
|
276 |
-
# retrieve number of attention layers
|
277 |
-
for module in self.children():
|
278 |
-
fn_recursive_retrieve_slicable_dims(module)
|
279 |
-
|
280 |
-
num_slicable_layers = len(sliceable_head_dims)
|
281 |
-
|
282 |
-
if slice_size == "auto":
|
283 |
-
# half the attention head size is usually a good trade-off between
|
284 |
-
# speed and memory
|
285 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
286 |
-
elif slice_size == "max":
|
287 |
-
# make smallest slice possible
|
288 |
-
slice_size = num_slicable_layers * [1]
|
289 |
-
|
290 |
-
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
291 |
-
|
292 |
-
if len(slice_size) != len(sliceable_head_dims):
|
293 |
-
raise ValueError(
|
294 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
295 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
296 |
-
)
|
297 |
-
|
298 |
-
for i in range(len(slice_size)):
|
299 |
-
size = slice_size[i]
|
300 |
-
dim = sliceable_head_dims[i]
|
301 |
-
if size is not None and size > dim:
|
302 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
303 |
-
|
304 |
-
# Recursively walk through all the children.
|
305 |
-
# Any children which exposes the set_attention_slice method
|
306 |
-
# gets the message
|
307 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
308 |
-
if hasattr(module, "set_attention_slice"):
|
309 |
-
module.set_attention_slice(slice_size.pop())
|
310 |
-
|
311 |
-
for child in module.children():
|
312 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
313 |
-
|
314 |
-
reversed_slice_size = list(reversed(slice_size))
|
315 |
-
for module in self.children():
|
316 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
317 |
-
|
318 |
-
def _set_gradient_checkpointing(self, value=False):
|
319 |
-
self.gradient_checkpointing = value
|
320 |
-
self.mid_block.gradient_checkpointing = value
|
321 |
-
for module in self.down_blocks + self.up_blocks:
|
322 |
-
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
323 |
-
module.gradient_checkpointing = value
|
324 |
-
|
325 |
-
def forward(
|
326 |
-
self,
|
327 |
-
sample: torch.FloatTensor,
|
328 |
-
timestep: Union[torch.Tensor, float, int],
|
329 |
-
encoder_hidden_states: torch.Tensor,
|
330 |
-
class_labels: Optional[torch.Tensor] = None,
|
331 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
332 |
-
attention_mask: Optional[torch.Tensor] = None,
|
333 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
334 |
-
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
335 |
-
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
336 |
-
return_dict: bool = True,
|
337 |
-
) -> Union[UNet3DConditionOutput, Tuple]:
|
338 |
-
r"""
|
339 |
-
Args:
|
340 |
-
sample (`torch.FloatTensor`): (batch, num_frames, channel, height, width) noisy inputs tensor
|
341 |
-
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
342 |
-
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
343 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
344 |
-
Whether or not to return a [`models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain tuple.
|
345 |
-
cross_attention_kwargs (`dict`, *optional*):
|
346 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
347 |
-
`self.processor` in
|
348 |
-
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
349 |
-
|
350 |
-
Returns:
|
351 |
-
[`~models.unet_2d_condition.UNet3DConditionOutput`] or `tuple`:
|
352 |
-
[`~models.unet_2d_condition.UNet3DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
353 |
-
returning a tuple, the first element is the sample tensor.
|
354 |
-
"""
|
355 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
356 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
357 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
358 |
-
# on the fly if necessary.
|
359 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
360 |
-
|
361 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
362 |
-
forward_upsample_size = False
|
363 |
-
upsample_size = None
|
364 |
-
|
365 |
-
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
366 |
-
logger.info("Forward upsample size to force interpolation output size.")
|
367 |
-
forward_upsample_size = True
|
368 |
-
|
369 |
-
# prepare attention_mask
|
370 |
-
if attention_mask is not None:
|
371 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
372 |
-
attention_mask = attention_mask.unsqueeze(1)
|
373 |
-
|
374 |
-
# 1. time
|
375 |
-
timesteps = timestep
|
376 |
-
if not torch.is_tensor(timesteps):
|
377 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
378 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
379 |
-
is_mps = sample.device.type == "mps"
|
380 |
-
if isinstance(timestep, float):
|
381 |
-
dtype = torch.float32 if is_mps else torch.float64
|
382 |
-
else:
|
383 |
-
dtype = torch.int32 if is_mps else torch.int64
|
384 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
385 |
-
elif len(timesteps.shape) == 0:
|
386 |
-
timesteps = timesteps[None].to(sample.device)
|
387 |
-
|
388 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
389 |
-
num_frames = sample.shape[2]
|
390 |
-
timesteps = timesteps.expand(sample.shape[0])
|
391 |
-
|
392 |
-
t_emb = self.time_proj(timesteps)
|
393 |
-
|
394 |
-
# timesteps does not contain any weights and will always return f32 tensors
|
395 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
396 |
-
# there might be better ways to encapsulate this.
|
397 |
-
t_emb = t_emb.to(dtype=self.dtype)
|
398 |
-
|
399 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
400 |
-
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
|
401 |
-
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
|
402 |
-
|
403 |
-
# 2. pre-process
|
404 |
-
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
|
405 |
-
sample = self.conv_in(sample)
|
406 |
-
|
407 |
-
if num_frames > 1:
|
408 |
-
if self.gradient_checkpointing:
|
409 |
-
sample = transformer_g_c(self.transformer_in, sample, num_frames)
|
410 |
-
else:
|
411 |
-
sample = self.transformer_in(sample, num_frames=num_frames).sample
|
412 |
-
|
413 |
-
# 3. down
|
414 |
-
down_block_res_samples = (sample,)
|
415 |
-
for downsample_block in self.down_blocks:
|
416 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
417 |
-
sample, res_samples = downsample_block(
|
418 |
-
hidden_states=sample,
|
419 |
-
temb=emb,
|
420 |
-
encoder_hidden_states=encoder_hidden_states,
|
421 |
-
attention_mask=attention_mask,
|
422 |
-
num_frames=num_frames,
|
423 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
424 |
-
)
|
425 |
-
else:
|
426 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
|
427 |
-
|
428 |
-
down_block_res_samples += res_samples
|
429 |
-
|
430 |
-
if down_block_additional_residuals is not None:
|
431 |
-
new_down_block_res_samples = ()
|
432 |
-
|
433 |
-
for down_block_res_sample, down_block_additional_residual in zip(
|
434 |
-
down_block_res_samples, down_block_additional_residuals
|
435 |
-
):
|
436 |
-
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
437 |
-
new_down_block_res_samples += (down_block_res_sample,)
|
438 |
-
|
439 |
-
down_block_res_samples = new_down_block_res_samples
|
440 |
-
|
441 |
-
# 4. mid
|
442 |
-
if self.mid_block is not None:
|
443 |
-
sample = self.mid_block(
|
444 |
-
sample,
|
445 |
-
emb,
|
446 |
-
encoder_hidden_states=encoder_hidden_states,
|
447 |
-
attention_mask=attention_mask,
|
448 |
-
num_frames=num_frames,
|
449 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
450 |
-
)
|
451 |
-
|
452 |
-
if mid_block_additional_residual is not None:
|
453 |
-
sample = sample + mid_block_additional_residual
|
454 |
-
|
455 |
-
# 5. up
|
456 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
457 |
-
is_final_block = i == len(self.up_blocks) - 1
|
458 |
-
|
459 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
460 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
461 |
-
|
462 |
-
# if we have not reached the final block and need to forward the
|
463 |
-
# upsample size, we do it here
|
464 |
-
if not is_final_block and forward_upsample_size:
|
465 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
466 |
-
|
467 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
468 |
-
sample = upsample_block(
|
469 |
-
hidden_states=sample,
|
470 |
-
temb=emb,
|
471 |
-
res_hidden_states_tuple=res_samples,
|
472 |
-
encoder_hidden_states=encoder_hidden_states,
|
473 |
-
upsample_size=upsample_size,
|
474 |
-
attention_mask=attention_mask,
|
475 |
-
num_frames=num_frames,
|
476 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
477 |
-
)
|
478 |
-
else:
|
479 |
-
sample = upsample_block(
|
480 |
-
hidden_states=sample,
|
481 |
-
temb=emb,
|
482 |
-
res_hidden_states_tuple=res_samples,
|
483 |
-
upsample_size=upsample_size,
|
484 |
-
num_frames=num_frames,
|
485 |
-
)
|
486 |
-
|
487 |
-
# 6. post-process
|
488 |
-
if self.conv_norm_out:
|
489 |
-
sample = self.conv_norm_out(sample)
|
490 |
-
sample = self.conv_act(sample)
|
491 |
-
|
492 |
-
sample = self.conv_out(sample)
|
493 |
-
|
494 |
-
# reshape to (batch, channel, framerate, width, height)
|
495 |
-
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
|
496 |
-
|
497 |
-
if not return_dict:
|
498 |
-
return (sample,)
|
499 |
-
|
500 |
-
return UNet3DConditionOutput(sample=sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|