Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 195.31 +/- 49.57
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f99134e8830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99134e88c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99134e8950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99134e89e0>", "_build": "<function ActorCriticPolicy._build at 0x7f99134e8a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f99134e8b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99134e8b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f99134e8c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99134e8cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99134e8d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99134e8dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f991352ecf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651716420.9527545, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAF2amj62eKo+iEBhPqK+hb7GV849y0/xPQAAAAAAAAAAMyL1vT06MrmGXHS7dXt9t5IDjLqjAJM6AACAPwAAgD8zY0u8Ulmou5OGGTxtyuI8DHMTPRinvL0AAIA/AACAP5MXGj5uC6093q+ava9Ig77awzW+AMKdPQAAAAAAAAAAzbFZPtinyz0D62U9ZImjvnwQDT47MAs+AAAAAAAAAACzAk09SHnPOQJvDrwwNtU7SM2AORKkRD0AAAAAAAAAAE2UDb2k4Fq5WorTO5TutLVfJs87AV+utAAAgD8AAIA/QFKDvVJsnDoq0AS9/XEBPIP5YjyOXeQ8AAAAAAAAgD/a/3u+Xz+OPG2LuzwkO728tTkdvgsnTr0AAAAAAAAAAKtxB7/GpVe+YwElvMAaabsHrYU+w9QPvQAAAAAAAAAAazUFP7PKFb4qRPg5aiUeuOV+8r2FqhS5AAAAAAAAgD8NJok99nhsujEgErvMS+43VoMTO3R/qzkAAIA/AACAP800lDzsMZI4tRDNPB0hEDbtapA6qAoQNQAAgD8AAIA/wD2NvYWLqDgywj89YY7FvC+7B7x1uPm8AAAAAAAAAACaVc074fqrN6PcPzyAx2U2pIDkO4D9bjUAAIA/AACAP6AFS752HA288RSYOuYqQTi78m09LCexuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5PkMqDflX0CUhpRSlIwBbJRN6AOMAXSUR0CNqQN4JNTMdX2UKGgGaAloD0MIu38sRIcnWUCUhpRSlGgVTegDaBZHQI2xfmvGIbh1fZQoaAZoCWgPQwi296kqNH1WQJSGlFKUaBVN6ANoFkdAjb2jJEH+qHV9lChoBmgJaA9DCFyOVyB6VEJAlIaUUpRoFU3oA2gWR0CNvvJJ5E+gdX2UKGgGaAloD0MI0cq9wCxkY0CUhpRSlGgVTegDaBZHQI3McVpKzzF1fZQoaAZoCWgPQwisG++OjHpiQJSGlFKUaBVN6ANoFkdAjc0Z31SOznV9lChoBmgJaA9DCILn3sMlyzLAlIaUUpRoFU3oA2gWR0COGTuVopQUdX2UKGgGaAloD0MI97AXCli+YECUhpRSlGgVTegDaBZHQI41He1rqMZ1fZQoaAZoCWgPQwiKWS+GcoxUQJSGlFKUaBVN6ANoFkdAjjwQaJhvznV9lChoBmgJaA9DCOwvuyePNGFAlIaUUpRoFU3oA2gWR0COSDa/RE4OdX2UKGgGaAloD0MI3j1A9+UOSkCUhpRSlGgVTegDaBZHQI5IaV4X40x1fZQoaAZoCWgPQwip2m6Cb19iQJSGlFKUaBVN6ANoFkdAjkqH446wMnV9lChoBmgJaA9DCAq7KHrgqllAlIaUUpRoFU3oA2gWR0COUGABkqc3dX2UKGgGaAloD0MIzOzzGOVjUUCUhpRSlGgVTegDaBZHQI5igI6bONZ1fZQoaAZoCWgPQwjhl/p5U1lIQJSGlFKUaBVN6ANoFkdAjoMU5+6RQ3V9lChoBmgJaA9DCJHwvb9BcGBAlIaUUpRoFU3oA2gWR0COmLitJWeZdX2UKGgGaAloD0MIDXGsi9ukU0CUhpRSlGgVTegDaBZHQI6ZH16E8JV1fZQoaAZoCWgPQwgKhQg4hEBPQJSGlFKUaBVN6ANoFkdAjqJyqU/wAnV9lChoBmgJaA9DCNNsHofBjEZAlIaUUpRoFU3oA2gWR0COrvf1pTMrdX2UKGgGaAloD0MIWDhJ88cGWkCUhpRSlGgVTegDaBZHQI6wZjWkJrt1fZQoaAZoCWgPQwgYQs77/yQyQJSGlFKUaBVL/GgWR0COs0IY3vQXdX2UKGgGaAloD0MItHHEWnwUVUCUhpRSlGgVTegDaBZHQI694dfb9Ih1fZQoaAZoCWgPQwjxSpLn+uxOQJSGlFKUaBVN6ANoFkdAjr6O5J9RaXV9lChoBmgJaA9DCGaDTDJyZkLAlIaUUpRoFUvuaBZHQI7CV+Zw4sF1fZQoaAZoCWgPQwibcRqiCrdhQJSGlFKUaBVN6ANoFkdAjwYUnPVurXV9lChoBmgJaA9DCB2vQPSk9kVAlIaUUpRoFU3oA2gWR0CPHm/CZWq+dX2UKGgGaAloD0MIxO3QsBijY0CUhpRSlGgVTegDaBZHQI8kr5wfhdd1fZQoaAZoCWgPQwjvb9Be/SNjQJSGlFKUaBVN6ANoFkdAjzAH31zySXV9lChoBmgJaA9DCPdzCvKzEV9AlIaUUpRoFU3oA2gWR0CPMDg3tKI0dX2UKGgGaAloD0MIUIvBw7T2XkCUhpRSlGgVTegDaBZHQI8yOqNp/PR1fZQoaAZoCWgPQwisrG2Kx41PQJSGlFKUaBVN6ANoFkdAjzdOx0MgEHV9lChoBmgJaA9DCPq0iv7QS1JAlIaUUpRoFU3oA2gWR0CPSEdsBQvYdX2UKGgGaAloD0MI5e/eUWMqKkCUhpRSlGgVS89oFkdAj1l1CPZIx3V9lChoBmgJaA9DCLX5f9URhmBAlIaUUpRoFU3oA2gWR0CPgQc5sCT2dX2UKGgGaAloD0MI4DDRIAW5UsCUhpRSlGgVS9ZoFkdAj4YSQHRkVnV9lChoBmgJaA9DCGEaho+Iu11AlIaUUpRoFU3oA2gWR0CPi8g7HQyAdX2UKGgGaAloD0MIL90kBoE5UUCUhpRSlGgVTegDaBZHQI+Z6hHskY51fZQoaAZoCWgPQwgX78ftl7xbQJSGlFKUaBVN6ANoFkdAj5uQf6oES3V9lChoBmgJaA9DCAjjp3HvVGBAlIaUUpRoFU3oA2gWR0CPnvHktEofdX2UKGgGaAloD0MIXtbEAl8BTUCUhpRSlGgVTegDaBZHQI+q1KbrkbR1fZQoaAZoCWgPQwjUYvAw7SZeQJSGlFKUaBVN6ANoFkdAj6uVymygPHV9lChoBmgJaA9DCLudfeVBWmBAlIaUUpRoFU3oA2gWR0CPsFBSk0rLdX2UKGgGaAloD0MISMX/HVFZOMCUhpRSlGgVS7hoFkdAj7qFHz6JqXV9lChoBmgJaA9DCMpOP6iLXVZAlIaUUpRoFU3oA2gWR0CPvU3n6l+FdX2UKGgGaAloD0MI2EroLokKXECUhpRSlGgVTegDaBZHQJAJf/ACW/t1fZQoaAZoCWgPQwjM8J9uoL5YQJSGlFKUaBVN6ANoFkdAkAykihWYGHV9lChoBmgJaA9DCLow0ovayUHAlIaUUpRoFU12AWgWR0CQDTAwwj+rdX2UKGgGaAloD0MI/UtSmWJUYECUhpRSlGgVTegDaBZHQJASEysS00F1fZQoaAZoCWgPQwiKAn0iT3NRQJSGlFKUaBVN6ANoFkdAkBIpRCQcP3V9lChoBmgJaA9DCJXx7zMuMF5AlIaUUpRoFU3oA2gWR0CQEwZzxPO6dX2UKGgGaAloD0MIg9vawvMyOkCUhpRSlGgVS5BoFkdAkBVSRjjJdXV9lChoBmgJaA9DCPZ+ox03LlPAlIaUUpRoFU1cAWgWR0CQGHDf3vhIdX2UKGgGaAloD0MI+z2xTpWXRsCUhpRSlGgVS7loFkdAkBr57TlT33V9lChoBmgJaA9DCOOJIM5D1WBAlIaUUpRoFU3oA2gWR0CQHPDwpe/pdX2UKGgGaAloD0MIO+ElOPUxFUCUhpRSlGgVS5xoFkdAkB0WjO9nLHV9lChoBmgJaA9DCKcFL/oKshrAlIaUUpRoFUuTaBZHQJAdSe4Cp3p1fZQoaAZoCWgPQwguceSByMo0wJSGlFKUaBVL4GgWR0CQLjEnb7CSdX2UKGgGaAloD0MIfuGVJM/CV0CUhpRSlGgVTegDaBZHQJA0LKMefZp1fZQoaAZoCWgPQwgKZkzBGo9QQJSGlFKUaBVN6ANoFkdAkDYXn2ZiNXV9lChoBmgJaA9DCKcIcHoX9WFAlIaUUpRoFU3oA2gWR0CQOE6Tnq3WdX2UKGgGaAloD0MIU8vW+iLSXECUhpRSlGgVTegDaBZHQJBANXnyNGV1fZQoaAZoCWgPQwhDc51GWnokwJSGlFKUaBVLzmgWR0CQRbXQMQVcdX2UKGgGaAloD0MIAHMtWoD0V0CUhpRSlGgVTegDaBZHQJBF6avzOHF1fZQoaAZoCWgPQwiL3qmA+69hQJSGlFKUaBVN6ANoFkdAkEY7sv7FbXV9lChoBmgJaA9DCM3pspjYe1VAlIaUUpRoFU3oA2gWR0CQSFtXgccVdX2UKGgGaAloD0MI6zpUU5KNYkCUhpRSlGgVTegDaBZHQJBOYy1uzhR1fZQoaAZoCWgPQwgrGJXUCUVdwJSGlFKUaBVNyQFoFkdAkHoj6N2ki3V9lChoBmgJaA9DCJOpglFJ4F5AlIaUUpRoFU3oA2gWR0CQe1esxO+JdX2UKGgGaAloD0MI8rbSa7P7QECUhpRSlGgVS7hoFkdAkHwLlzU7S3V9lChoBmgJaA9DCAslk1O7TGJAlIaUUpRoFU3oA2gWR0CQgPq2jO9ndX2UKGgGaAloD0MIkwGgihuAWECUhpRSlGgVTegDaBZHQJCFGI/JNj91fZQoaAZoCWgPQwgXf9sTJFJGQJSGlFKUaBVN6ANoFkdAkIj4+Sr5qXV9lChoBmgJaA9DCEsjZvZ57WNAlIaUUpRoFU3NAWgWR0CQipbqhUR4dX2UKGgGaAloD0MIwoU8ghsJWECUhpRSlGgVTegDaBZHQJCLw+C9RJp1fZQoaAZoCWgPQwgY7fFCOpwJQJSGlFKUaBVL2mgWR0CQjdPUaybAdX2UKGgGaAloD0MIlZ1+UBcKXkCUhpRSlGgVTegDaBZHQJCN/H0btJF1fZQoaAZoCWgPQwhCCTNt/7FYQJSGlFKUaBVN6ANoFkdAkI44mTkhinV9lChoBmgJaA9DCLFQa5p3cF5AlIaUUpRoFU3oA2gWR0CQoHqgRK6GdX2UKGgGaAloD0MIdY4B2esfTsCUhpRSlGgVTS0BaBZHQJCh2OCGvfV1fZQoaAZoCWgPQwgOSS2UTJNfQJSGlFKUaBVN6ANoFkdAkKuGDDjzZ3V9lChoBmgJaA9DCHC2uTE9p1JAlIaUUpRoFU3oA2gWR0CQtSFyq+8HdX2UKGgGaAloD0MIFto5zQJ7WkCUhpRSlGgVTegDaBZHQJC7lmdy1eB1fZQoaAZoCWgPQwhx5ldzgNtbQJSGlFKUaBVN6ANoFkdAkLwpkXk5qHV9lChoBmgJaA9DCAG/RpIg7l9AlIaUUpRoFU3oA2gWR0CQvqWvbGm2dX2UKGgGaAloD0MI20yFeCTNWUCUhpRSlGgVTegDaBZHQJD2bsgMc6x1fZQoaAZoCWgPQwjBbti2KPZZQJSGlFKUaBVN6ANoFkdAkPihOYYzi3V9lChoBmgJaA9DCL+bbtkh+VtAlIaUUpRoFU3oA2gWR0CRAHiGWUr1dX2UKGgGaAloD0MIbQGh9fCSW0CUhpRSlGgVTegDaBZHQJEEvfzjFQ51fZQoaAZoCWgPQwiMhLacSxRdQJSGlFKUaBVN6ANoFkdAkQqPYe1a4nV9lChoBmgJaA9DCMWQnEzcV1ZAlIaUUpRoFU3oA2gWR0CRC8fLcKw7dX2UKGgGaAloD0MIxVT6CWcAVkCUhpRSlGgVTegDaBZHQJEN3vCuU2V1fZQoaAZoCWgPQwj8U6pE2QtgQJSGlFKUaBVN6ANoFkdAkQ4E34sVcnV9lChoBmgJaA9DCFOzB1qBslxAlIaUUpRoFU3oA2gWR0CRDjkp7TlUdX2UKGgGaAloD0MIlMDmHDzlWECUhpRSlGgVTegDaBZHQJEdR57gKnh1fZQoaAZoCWgPQwgibk4lA19gQJSGlFKUaBVN6ANoFkdAkR5+1rqMWHV9lChoBmgJaA9DCMFSXcDL71FAlIaUUpRoFU3oA2gWR0CRJsNRWLgodX2UKGgGaAloD0MIQfSkTGpVUUCUhpRSlGgVTegDaBZHQJEvHc2zfJp1fZQoaAZoCWgPQwhcc0f/yz1TQJSGlFKUaBVN6ANoFkdAkTUSN4qwyXV9lChoBmgJaA9DCA1v1uD9iGBAlIaUUpRoFU3oA2gWR0CRNavB7/n4dX2UKGgGaAloD0MI5IIz+PufXkCUhpRSlGgVTegDaBZHQJE4H/6wdKd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98f341b63cebfcbd8d67c23ac7d06a374131460d214098ae4323144ae552702c
|
3 |
+
size 144032
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f99134e8830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99134e88c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99134e8950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99134e89e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f99134e8a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f99134e8b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99134e8b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f99134e8c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99134e8cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99134e8d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99134e8dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f991352ecf0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651716420.9527545,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAF2amj62eKo+iEBhPqK+hb7GV849y0/xPQAAAAAAAAAAMyL1vT06MrmGXHS7dXt9t5IDjLqjAJM6AACAPwAAgD8zY0u8Ulmou5OGGTxtyuI8DHMTPRinvL0AAIA/AACAP5MXGj5uC6093q+ava9Ig77awzW+AMKdPQAAAAAAAAAAzbFZPtinyz0D62U9ZImjvnwQDT47MAs+AAAAAAAAAACzAk09SHnPOQJvDrwwNtU7SM2AORKkRD0AAAAAAAAAAE2UDb2k4Fq5WorTO5TutLVfJs87AV+utAAAgD8AAIA/QFKDvVJsnDoq0AS9/XEBPIP5YjyOXeQ8AAAAAAAAgD/a/3u+Xz+OPG2LuzwkO728tTkdvgsnTr0AAAAAAAAAAKtxB7/GpVe+YwElvMAaabsHrYU+w9QPvQAAAAAAAAAAazUFP7PKFb4qRPg5aiUeuOV+8r2FqhS5AAAAAAAAgD8NJok99nhsujEgErvMS+43VoMTO3R/qzkAAIA/AACAP800lDzsMZI4tRDNPB0hEDbtapA6qAoQNQAAgD8AAIA/wD2NvYWLqDgywj89YY7FvC+7B7x1uPm8AAAAAAAAAACaVc074fqrN6PcPzyAx2U2pIDkO4D9bjUAAIA/AACAP6AFS752HA288RSYOuYqQTi78m09LCexuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5PkMqDflX0CUhpRSlIwBbJRN6AOMAXSUR0CNqQN4JNTMdX2UKGgGaAloD0MIu38sRIcnWUCUhpRSlGgVTegDaBZHQI2xfmvGIbh1fZQoaAZoCWgPQwi296kqNH1WQJSGlFKUaBVN6ANoFkdAjb2jJEH+qHV9lChoBmgJaA9DCFyOVyB6VEJAlIaUUpRoFU3oA2gWR0CNvvJJ5E+gdX2UKGgGaAloD0MI0cq9wCxkY0CUhpRSlGgVTegDaBZHQI3McVpKzzF1fZQoaAZoCWgPQwisG++OjHpiQJSGlFKUaBVN6ANoFkdAjc0Z31SOznV9lChoBmgJaA9DCILn3sMlyzLAlIaUUpRoFU3oA2gWR0COGTuVopQUdX2UKGgGaAloD0MI97AXCli+YECUhpRSlGgVTegDaBZHQI41He1rqMZ1fZQoaAZoCWgPQwiKWS+GcoxUQJSGlFKUaBVN6ANoFkdAjjwQaJhvznV9lChoBmgJaA9DCOwvuyePNGFAlIaUUpRoFU3oA2gWR0COSDa/RE4OdX2UKGgGaAloD0MI3j1A9+UOSkCUhpRSlGgVTegDaBZHQI5IaV4X40x1fZQoaAZoCWgPQwip2m6Cb19iQJSGlFKUaBVN6ANoFkdAjkqH446wMnV9lChoBmgJaA9DCAq7KHrgqllAlIaUUpRoFU3oA2gWR0COUGABkqc3dX2UKGgGaAloD0MIzOzzGOVjUUCUhpRSlGgVTegDaBZHQI5igI6bONZ1fZQoaAZoCWgPQwjhl/p5U1lIQJSGlFKUaBVN6ANoFkdAjoMU5+6RQ3V9lChoBmgJaA9DCJHwvb9BcGBAlIaUUpRoFU3oA2gWR0COmLitJWeZdX2UKGgGaAloD0MIDXGsi9ukU0CUhpRSlGgVTegDaBZHQI6ZH16E8JV1fZQoaAZoCWgPQwgKhQg4hEBPQJSGlFKUaBVN6ANoFkdAjqJyqU/wAnV9lChoBmgJaA9DCNNsHofBjEZAlIaUUpRoFU3oA2gWR0COrvf1pTMrdX2UKGgGaAloD0MIWDhJ88cGWkCUhpRSlGgVTegDaBZHQI6wZjWkJrt1fZQoaAZoCWgPQwgYQs77/yQyQJSGlFKUaBVL/GgWR0COs0IY3vQXdX2UKGgGaAloD0MItHHEWnwUVUCUhpRSlGgVTegDaBZHQI694dfb9Ih1fZQoaAZoCWgPQwjxSpLn+uxOQJSGlFKUaBVN6ANoFkdAjr6O5J9RaXV9lChoBmgJaA9DCGaDTDJyZkLAlIaUUpRoFUvuaBZHQI7CV+Zw4sF1fZQoaAZoCWgPQwibcRqiCrdhQJSGlFKUaBVN6ANoFkdAjwYUnPVurXV9lChoBmgJaA9DCB2vQPSk9kVAlIaUUpRoFU3oA2gWR0CPHm/CZWq+dX2UKGgGaAloD0MIxO3QsBijY0CUhpRSlGgVTegDaBZHQI8kr5wfhdd1fZQoaAZoCWgPQwjvb9Be/SNjQJSGlFKUaBVN6ANoFkdAjzAH31zySXV9lChoBmgJaA9DCPdzCvKzEV9AlIaUUpRoFU3oA2gWR0CPMDg3tKI0dX2UKGgGaAloD0MIUIvBw7T2XkCUhpRSlGgVTegDaBZHQI8yOqNp/PR1fZQoaAZoCWgPQwisrG2Kx41PQJSGlFKUaBVN6ANoFkdAjzdOx0MgEHV9lChoBmgJaA9DCPq0iv7QS1JAlIaUUpRoFU3oA2gWR0CPSEdsBQvYdX2UKGgGaAloD0MI5e/eUWMqKkCUhpRSlGgVS89oFkdAj1l1CPZIx3V9lChoBmgJaA9DCLX5f9URhmBAlIaUUpRoFU3oA2gWR0CPgQc5sCT2dX2UKGgGaAloD0MI4DDRIAW5UsCUhpRSlGgVS9ZoFkdAj4YSQHRkVnV9lChoBmgJaA9DCGEaho+Iu11AlIaUUpRoFU3oA2gWR0CPi8g7HQyAdX2UKGgGaAloD0MIL90kBoE5UUCUhpRSlGgVTegDaBZHQI+Z6hHskY51fZQoaAZoCWgPQwgX78ftl7xbQJSGlFKUaBVN6ANoFkdAj5uQf6oES3V9lChoBmgJaA9DCAjjp3HvVGBAlIaUUpRoFU3oA2gWR0CPnvHktEofdX2UKGgGaAloD0MIXtbEAl8BTUCUhpRSlGgVTegDaBZHQI+q1KbrkbR1fZQoaAZoCWgPQwjUYvAw7SZeQJSGlFKUaBVN6ANoFkdAj6uVymygPHV9lChoBmgJaA9DCLudfeVBWmBAlIaUUpRoFU3oA2gWR0CPsFBSk0rLdX2UKGgGaAloD0MISMX/HVFZOMCUhpRSlGgVS7hoFkdAj7qFHz6JqXV9lChoBmgJaA9DCMpOP6iLXVZAlIaUUpRoFU3oA2gWR0CPvU3n6l+FdX2UKGgGaAloD0MI2EroLokKXECUhpRSlGgVTegDaBZHQJAJf/ACW/t1fZQoaAZoCWgPQwjM8J9uoL5YQJSGlFKUaBVN6ANoFkdAkAykihWYGHV9lChoBmgJaA9DCLow0ovayUHAlIaUUpRoFU12AWgWR0CQDTAwwj+rdX2UKGgGaAloD0MI/UtSmWJUYECUhpRSlGgVTegDaBZHQJASEysS00F1fZQoaAZoCWgPQwiKAn0iT3NRQJSGlFKUaBVN6ANoFkdAkBIpRCQcP3V9lChoBmgJaA9DCJXx7zMuMF5AlIaUUpRoFU3oA2gWR0CQEwZzxPO6dX2UKGgGaAloD0MIg9vawvMyOkCUhpRSlGgVS5BoFkdAkBVSRjjJdXV9lChoBmgJaA9DCPZ+ox03LlPAlIaUUpRoFU1cAWgWR0CQGHDf3vhIdX2UKGgGaAloD0MI+z2xTpWXRsCUhpRSlGgVS7loFkdAkBr57TlT33V9lChoBmgJaA9DCOOJIM5D1WBAlIaUUpRoFU3oA2gWR0CQHPDwpe/pdX2UKGgGaAloD0MIO+ElOPUxFUCUhpRSlGgVS5xoFkdAkB0WjO9nLHV9lChoBmgJaA9DCKcFL/oKshrAlIaUUpRoFUuTaBZHQJAdSe4Cp3p1fZQoaAZoCWgPQwguceSByMo0wJSGlFKUaBVL4GgWR0CQLjEnb7CSdX2UKGgGaAloD0MIfuGVJM/CV0CUhpRSlGgVTegDaBZHQJA0LKMefZp1fZQoaAZoCWgPQwgKZkzBGo9QQJSGlFKUaBVN6ANoFkdAkDYXn2ZiNXV9lChoBmgJaA9DCKcIcHoX9WFAlIaUUpRoFU3oA2gWR0CQOE6Tnq3WdX2UKGgGaAloD0MIU8vW+iLSXECUhpRSlGgVTegDaBZHQJBANXnyNGV1fZQoaAZoCWgPQwhDc51GWnokwJSGlFKUaBVLzmgWR0CQRbXQMQVcdX2UKGgGaAloD0MIAHMtWoD0V0CUhpRSlGgVTegDaBZHQJBF6avzOHF1fZQoaAZoCWgPQwiL3qmA+69hQJSGlFKUaBVN6ANoFkdAkEY7sv7FbXV9lChoBmgJaA9DCM3pspjYe1VAlIaUUpRoFU3oA2gWR0CQSFtXgccVdX2UKGgGaAloD0MI6zpUU5KNYkCUhpRSlGgVTegDaBZHQJBOYy1uzhR1fZQoaAZoCWgPQwgrGJXUCUVdwJSGlFKUaBVNyQFoFkdAkHoj6N2ki3V9lChoBmgJaA9DCJOpglFJ4F5AlIaUUpRoFU3oA2gWR0CQe1esxO+JdX2UKGgGaAloD0MI8rbSa7P7QECUhpRSlGgVS7hoFkdAkHwLlzU7S3V9lChoBmgJaA9DCAslk1O7TGJAlIaUUpRoFU3oA2gWR0CQgPq2jO9ndX2UKGgGaAloD0MIkwGgihuAWECUhpRSlGgVTegDaBZHQJCFGI/JNj91fZQoaAZoCWgPQwgXf9sTJFJGQJSGlFKUaBVN6ANoFkdAkIj4+Sr5qXV9lChoBmgJaA9DCEsjZvZ57WNAlIaUUpRoFU3NAWgWR0CQipbqhUR4dX2UKGgGaAloD0MIwoU8ghsJWECUhpRSlGgVTegDaBZHQJCLw+C9RJp1fZQoaAZoCWgPQwgY7fFCOpwJQJSGlFKUaBVL2mgWR0CQjdPUaybAdX2UKGgGaAloD0MIlZ1+UBcKXkCUhpRSlGgVTegDaBZHQJCN/H0btJF1fZQoaAZoCWgPQwhCCTNt/7FYQJSGlFKUaBVN6ANoFkdAkI44mTkhinV9lChoBmgJaA9DCLFQa5p3cF5AlIaUUpRoFU3oA2gWR0CQoHqgRK6GdX2UKGgGaAloD0MIdY4B2esfTsCUhpRSlGgVTS0BaBZHQJCh2OCGvfV1fZQoaAZoCWgPQwgOSS2UTJNfQJSGlFKUaBVN6ANoFkdAkKuGDDjzZ3V9lChoBmgJaA9DCHC2uTE9p1JAlIaUUpRoFU3oA2gWR0CQtSFyq+8HdX2UKGgGaAloD0MIFto5zQJ7WkCUhpRSlGgVTegDaBZHQJC7lmdy1eB1fZQoaAZoCWgPQwhx5ldzgNtbQJSGlFKUaBVN6ANoFkdAkLwpkXk5qHV9lChoBmgJaA9DCAG/RpIg7l9AlIaUUpRoFU3oA2gWR0CQvqWvbGm2dX2UKGgGaAloD0MI20yFeCTNWUCUhpRSlGgVTegDaBZHQJD2bsgMc6x1fZQoaAZoCWgPQwjBbti2KPZZQJSGlFKUaBVN6ANoFkdAkPihOYYzi3V9lChoBmgJaA9DCL+bbtkh+VtAlIaUUpRoFU3oA2gWR0CRAHiGWUr1dX2UKGgGaAloD0MIbQGh9fCSW0CUhpRSlGgVTegDaBZHQJEEvfzjFQ51fZQoaAZoCWgPQwiMhLacSxRdQJSGlFKUaBVN6ANoFkdAkQqPYe1a4nV9lChoBmgJaA9DCMWQnEzcV1ZAlIaUUpRoFU3oA2gWR0CRC8fLcKw7dX2UKGgGaAloD0MIxVT6CWcAVkCUhpRSlGgVTegDaBZHQJEN3vCuU2V1fZQoaAZoCWgPQwj8U6pE2QtgQJSGlFKUaBVN6ANoFkdAkQ4E34sVcnV9lChoBmgJaA9DCFOzB1qBslxAlIaUUpRoFU3oA2gWR0CRDjkp7TlUdX2UKGgGaAloD0MIlMDmHDzlWECUhpRSlGgVTegDaBZHQJEdR57gKnh1fZQoaAZoCWgPQwgibk4lA19gQJSGlFKUaBVN6ANoFkdAkR5+1rqMWHV9lChoBmgJaA9DCMFSXcDL71FAlIaUUpRoFU3oA2gWR0CRJsNRWLgodX2UKGgGaAloD0MIQfSkTGpVUUCUhpRSlGgVTegDaBZHQJEvHc2zfJp1fZQoaAZoCWgPQwhcc0f/yz1TQJSGlFKUaBVN6ANoFkdAkTUSN4qwyXV9lChoBmgJaA9DCA1v1uD9iGBAlIaUUpRoFU3oA2gWR0CRNavB7/n4dX2UKGgGaAloD0MI5IIz+PufXkCUhpRSlGgVTegDaBZHQJE4H/6wdKd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c316c77ec898494f5cd1b084a5ef8f297dc095d9885c26809a1426450277743e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ea7bd79e14eeca8140fbc6c1926d75f6bd63de27750f2406e02fedecadd3f9b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bda9a89cf384c59e1ace3c2e2a703df24388b4a4251b36410b7d8110b67cc5e
|
3 |
+
size 222406
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 195.31489930201244, "std_reward": 49.56676447323172, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:21:15.838785"}
|