File size: 2,446 Bytes
a9be191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: veerganesh/nvl
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: nvl-ca
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nvl-ca

This model is a fine-tuned version of [veerganesh/nvl](https://huggingface.co/veerganesh/nvl) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6535
- Rouge1: 36.3061
- Rouge2: 19.2836
- Rougel: 32.5026
- Rougelsum: 34.0495
- Gen Len: 17.64

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.4992        | 1.0   | 50   | 1.9758          | 33.2875 | 14.2313 | 28.8961 | 30.5569   | 17.38   |
| 2.1986        | 2.0   | 100  | 1.8501          | 33.5585 | 14.5244 | 29.1677 | 31.0933   | 17.74   |
| 2.074         | 3.0   | 150  | 1.7800          | 33.6105 | 15.9338 | 29.4441 | 31.2427   | 17.54   |
| 1.9801        | 4.0   | 200  | 1.7342          | 34.2445 | 16.941  | 29.5403 | 30.7901   | 17.62   |
| 1.9218        | 5.0   | 250  | 1.7061          | 35.1758 | 17.5234 | 30.3357 | 31.8524   | 17.68   |
| 1.8753        | 6.0   | 300  | 1.6854          | 34.6322 | 18.0581 | 30.5876 | 31.8437   | 17.8    |
| 1.8458        | 7.0   | 350  | 1.6705          | 35.8005 | 19.1994 | 31.9266 | 33.3519   | 17.64   |
| 1.8227        | 8.0   | 400  | 1.6586          | 36.5165 | 19.4833 | 32.5553 | 34.0398   | 17.56   |
| 1.8097        | 9.0   | 450  | 1.6550          | 36.2766 | 19.268  | 32.4987 | 34.0117   | 17.64   |
| 1.7891        | 10.0  | 500  | 1.6535          | 36.3061 | 19.2836 | 32.5026 | 34.0495   | 17.64   |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0