File size: 2,632 Bytes
a9be191
 
ebf1b64
a9be191
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf1b64
a9be191
ebf1b64
 
 
 
 
 
a9be191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf1b64
a9be191
 
 
 
 
ebf1b64
 
 
 
 
 
 
 
 
 
 
 
a9be191
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: nvl-ca
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nvl-ca

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6425
- Rouge1: 36.2683
- Rouge2: 17.3571
- Rougel: 31.414
- Rougelsum: 33.3573
- Gen Len: 18.1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.7351        | 1.0   | 50   | 2.0532          | 29.1549 | 10.8095 | 24.5213 | 27.1706   | 18.54   |
| 2.2954        | 2.0   | 100  | 1.8884          | 34.1103 | 15.1143 | 28.6964 | 30.6995   | 18.5    |
| 2.1461        | 3.0   | 150  | 1.7999          | 33.7268 | 15.3397 | 29.1248 | 30.7545   | 18.48   |
| 2.0402        | 4.0   | 200  | 1.7510          | 35.2811 | 16.3829 | 29.5922 | 31.3828   | 18.64   |
| 1.9727        | 5.0   | 250  | 1.7251          | 35.9939 | 17.0171 | 30.9116 | 32.514    | 18.3    |
| 1.9185        | 6.0   | 300  | 1.6982          | 36.1673 | 17.3892 | 31.4179 | 33.2171   | 18.06   |
| 1.8791        | 7.0   | 350  | 1.6809          | 36.0791 | 17.9475 | 31.6153 | 33.2867   | 18.2    |
| 1.8443        | 8.0   | 400  | 1.6631          | 36.3616 | 17.7432 | 31.9719 | 33.651    | 17.96   |
| 1.8322        | 9.0   | 450  | 1.6533          | 35.9061 | 16.9737 | 31.1291 | 33.1402   | 17.96   |
| 1.7978        | 10.0  | 500  | 1.6482          | 35.8366 | 17.0094 | 31.3893 | 33.3356   | 17.88   |
| 1.8037        | 11.0  | 550  | 1.6440          | 36.2683 | 17.3571 | 31.414  | 33.3573   | 18.1    |
| 1.7937        | 12.0  | 600  | 1.6425          | 36.2683 | 17.3571 | 31.414  | 33.3573   | 18.1    |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0