--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: intfloat/multilingual-e5-large metrics: - accuracy widget: - text: What promotions in RTEC have shown declining effectiveness and can be discontinued? - text: What are my priority brands in RTEC to get positive Lift Change in 2022? - text: What would be the expected incremental volume lift if the discount on Brand Zucaritas is raised by 5%? - text: Which promotion types are better for low discounts for Zucaritas ? - text: Which Promotions contributred the most ROI Change between 2022 and 2023? pipeline_tag: text-classification inference: true model-index: - name: SetFit with intfloat/multilingual-e5-large results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with intfloat/multilingual-e5-large This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6 | | | 2 | | | 3 | | | 5 | | | 0 | | | 4 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vgarg/promo_prescriptive_gpt_29_04_2024_v1") # Run inference preds = model("Which promotion types are better for low discounts for Zucaritas ?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 14.6667 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 10 | | 1 | 10 | | 2 | 10 | | 3 | 10 | | 4 | 10 | | 5 | 10 | | 6 | 9 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0058 | 1 | 0.3528 | - | | 0.2890 | 50 | 0.0485 | - | | 0.5780 | 100 | 0.0052 | - | | 0.8671 | 150 | 0.0014 | - | | 1.1561 | 200 | 0.0006 | - | | 1.4451 | 250 | 0.0004 | - | | 1.7341 | 300 | 0.0005 | - | | 2.0231 | 350 | 0.0004 | - | | 2.3121 | 400 | 0.0004 | - | | 2.6012 | 450 | 0.0005 | - | | 2.8902 | 500 | 0.0004 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.40.0 - PyTorch: 2.2.1+cu121 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```